
Languages, automata and computation II

Tutorial 1

Winter semester 2023/2024

During the lecture it was shown Angluin’s DFA learning algorithm. Recall
that in Angluin’s learning framework, Learner can ask two kind of queries:
Membership queries (“is word w ∈ Σ∗ in the language?” answer: yes / no) and
equivalence queries (“is the language recognised by a given DFA A?” answer:
yes / no + counter-example word witnessing inequivalence). Note that the size
n of the minimal automaton to be learned is not known by Learner in advance,
however it is fixed by Teacher before the learning algorithm can start (otherwise
Teacher can cheat and always answers “no” continually increasing n). In this
tutorial we explore what happens when we question one or more of the aspects
of this framework.

In the sequel, we fix a binary alphabet Σ = {a, b}. Recall that a (total) DFA
is a tuple A = (Σ, Q, qI , F, δ), where Q is a finite set of states, qI is the initial
state, F ⊆ Q is the set of final states, and δ : Q × Σ → Q is the transition
function. The size of a DFA A is the number of its states. The complexity of a
learning algorithm is a function f : N → N s.t. every automaton of size n ∈ N
can be learned with at most f(n) queries.

Exercise 1 (Learning from left quotient queries). Consider a learning frame-
work where Learner can ask queries of the form ε ∈ u−1L and u−1L = v−1L.
Is there a polynomial learning algorithm for DFA?

Solution: Yes. Learner can gradually discover the minimal DFA. Initially there
is state ε, which is initial. From a known state u ∈ Σ∗ and a letter a ∈ Σ, she
checks using quotient equivalence queries whether or not there is a known state
v s.t. (ua)−1L = v−1L. If yes, then there is a transition from u to v labelled a. If
not, then ua is added to the set of known states together with a transition from
u labelled a. This suffices to discover the transition structure of the automaton.
In order to discover accepting states, we use the other type of query. For every
known state u ∈ Σ∗, it is declared accepting iff ε ∈ u−1L.

Exercise 2 (Learning from inclusion queries). Consider a learning framework
where Learner can ask language inclusion queries of the form L(A) ⊆ L and
L ⊆ L(A). Is there a polynomial learning algorithm for DFA?

Solution: Yes, we reduce to Angluin’s algorithm for DFAs. The idea is that
inclusion queries can simulate both membership queries and equivalence queries.
When Learner wants to ask a membership query w ∈ L, we instead ask an
inclusion query {w} ⊆ L. When Learner wants to ask an equivalence query

1



L = L(A), we instead ask two inclusion queries L(A) ⊆ L and L ⊆ L(A),
returning counter-examples as appropriate.

Exercise 3 (146). Consider a modified learning framework where Learner can
only ask equivalence queries (and no membership queries). Moreover, to an
equivalence query, Teacher only answers yes / no (i.e., without inequivalence
counter-examples).

1. Design a learning algorithm of exponential complexity.

2. Show that one cannot do better. Does knowing the size n of Teacher’s
automaton help Learner?

Solution: We observe that there are at most n · 2n · n2·n ∈ 2O(n logn) DFAs of
size n, and thus 2O(n logn) DFA of size of size ≤ n. Regarding the first point,
Learner starts enumerating all DFAs of size 1, 2, 3, . . . and asks for equivalence
until it finds the right one. If the automaton to be learned has size n, then this
algorithm terminates after 2O(n logn) queries.

We argue that one cannot do better than this. Suppose that Learner uses
an algorithm that in order to learn a DFA of (unknown, but fixed) size n asks
equivalence queries for DFAs A1, . . . , Ak where k is strictly less than the number
f(n) of minimal DFA of size n, and then (incorrectly) returns Ak. Teacher
answers all queries negatively, which is consistent since she claims that the
automaton to be learned was one not enumerated by Learner. It remains to
argue that f(n) is exponential in n. For instance already over a unary alphabet

consider all languages L ⊆ {a}≤n
containing words of length at most n. There

are 2n+1 such languages and their minimal recognisers have size ≤ n, therefore
f(n) ≥ 2n+1.

This construction shows that knowing n does not help Learner.

The modification of the exercise above where Teacher additionally needs to
provide inequivalence counter-examples yields the same outcome, but now the
lower bound is harder to design. It was given as an open problem in [1], later
solved in [2].

Exercise 4. (147) Consider a modified learning framework where Learner can
only ask membership queries and a single equivalence query at the end.

1. Show that there is no learning algorithm.

2. What happens if Learner knows in advance the size n of the automaton
to be learned?

3. In the previous situation, is there a polynomial learning algorithm?

Solution: There is no algorithm which works for every size n of DFA to be
learned. By contradiction, suppose such an algorithm exists. Let Teacher’s au-
tomaton A be the automaton with n = 1 states recognising the empty language
and run the algorithm. Teacher always answers “no” to membership queries
w1, . . . , wk until Learner correctly proposes A. Now let Teacher’s automaton
be any automaton B rejecting w1, . . . , wk with nonempty language L(B) ̸= ∅.
Since Learner’s strategy is deterministic and membership queries are answered

2



the same way as before, also in this case Learner will propose A, which however
will be incorrect.

The situation is different if Learner knows that the automaton to be learned
has size n. Recall that two inequivalent DFAs of size n differ already at a
word of length at most n2 (complementation + product construction). Thus
Learner enumerates all words of length up to n2 and knowing the answer to
each of these 2n

2

membership queries they can correctly infer the automaton
to be learned. It is not clear whether this bound can be improved, for instance
deciding nonemptiness of the intersection of two DFA languages in sub-quadratic
time O(n2−ϵ) for some ϵ > 0 is a long-standing open problem.

There is no polynomial learning algorithm. By way of contradiction, let
p(x) ∈ N[x] and consider membership queries w1, . . . , wp(n). Teacher always
answers “no”. Suppose Learner guesses automaton A. If there is a word w
of length ≤ n not accepted by A and different from the wi’s, then Teacher
chooses the characteristic automaton Bw. Otherwise, A accepts all words w’s
of length ≤ n different from the wi’s. Since p(n) is a polynomial and there are
exponentially many words of length ≤ n, A accepts at least two such words. In
this case, Teacher chooses Bw for any word w of length ≤ n different from the
wi’s (which exists by the same argument). In both cases, L(A) ̸= L(Bw).

Exercise 5 (148). Consider a modified learning framework where Learner can
ask membership and equivalence queries, however Teacher does not provide any
counter-example to the equivalence queries.

1. Is there a polynomial time learning algorithm in this case? Does knowing
the size n of Teacher’s automaton help Learner?

2. What happens if Teacher provides only negative counter-examples (i.e.,
counter-examples only of the kind w ∈ L(A) \L)? And only positive ones
(L \ L(A))?

Solution: There is no such algorithm. Teacher keeps track of a set {Bw | w ∈ Σn}
of potential DFAs, where Bw has size n and recognises L(Bw) = {w}. When-
ever Learner asks a membership query w ∈ Σ∗, Teacher answers negatively and
removes Bw from the set if it is there. Whenever Learner asks an equivalence
query A, Teacher answers negatively and removes A from the set if it is there.
Since Teacher’s initial set has exponential size, and at each round zero or one
DFAs are removed from the set, it is clear that after a polynomial number of
rounds the set will be non-empty and Teacher can claim that the automaton to
be learned was any such survivor. Knowing the size n of Teacher’s automaton
does not help Learner.

Negative counter-examples don’t help, since Teacher can always return any
word w from L(A) and if this word has length n, remove the corresponding
Bw from the set. Also positive counter-examples don’t help, but in this case
Teacher keeps track of automata Bw’s recognising Σ∗\{w} for words w of length
n: Membership queries are always answered positively, and equivalence queries
negatively, always providing a positive counter-example not in L(A).

Exercise 6 (Learning from positive and negative examples). Show that the
following problem is NP-complete: In input we are given two disjoint finite
languages L,M ⊆fin Σ∗ and a number n ∈ N, and we need to decide whether

3



there exists a DFA of size at most n recognising all words from L and rejecting all
words from M . Hint: Reduce from SAT instances where every clause contains
either only positive or only negative literals (known to be NP-complete).

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, November 1987.

[2] Dana Angluin. Negative results for equivalence queries. Mach. Learn.,
5(2):121–150, jul 1990.

4


