
Languages, automata and computation II

Tutorial 2

Winter semester 2023/2024

In this tutorial we explore weighted automata and linear recursive sequences
over a field. In particular, we will be concerned with functions in Σ∗ → Q for a
finite alphabet Σ.

Exercise 1. Show that the set of functions Σ∗ → Q can be given the structure
of a vector space over Q. What is its dimension?

Solution: Define the addition of functions as (f + g)(w) := f(w) + g(w) and
scalar multiplication by α ∈ Q as (α · f)(w) := α · f(w). It can be checked that
these definitions satisfy the requirements of vector spaces.

The space is infinite dimensional: Functions fw’s s.t.fw(w) = 1 and fw(u) =
0 if u ̸= w are linearly independent.

Rational functions and their linear representations

A linear representation over Σ is a triple A = (x,M, y) where the transition
matrix M : Σ → Qk×k maps each letter a ∈ Σ to a k × k rational matrix Ma,
x : Q1×k is a row vector, and y : Qk×1 is a column vector. The transition matrix
M is extended homomorphically to a function Σ∗ → Qk×k (where matrices form
a ring with the usual notions of matrix sum and product). The semantics of a
linear representation is the function f : Σ∗ → Q s.t.

f(w) = x ·M(w) · y, for every w ∈ Σ∗.

Call a function rational if it is of the form above.

Exercise 2 (name of the game). Consider the special case of a unary alphabet
Σ = {a}. Define the generating series of f : N → Q to be

f(x) =

∞∑
n=0

f(n) · xn

Show that if f is rational iff its generating series f(x) is a rational power series.
Recall that rational power series are those which can be written as p(x)/q(x)
for two polynomials p, q ∈ Q[x].
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Solution: For the “only if” direction, assume f is rational and thus f(n) =
u ·Mn · v. Then its generating series satisfies

f(x) =
∑
n

(u ·Mn · v)xn =

= u ·
∑
n

(Mx)n · v =

= u · (I −Mx)−1 · v,

where one observes that I −Mx is invertible (even over the ring of power series
matrices) and that the inverse of a polynomial matrix is a rational matrix.

For the “if ” direction, let f(x) = p(x)
1−x·q(x) . Thus f(x) = p(x)+x · q(x) ·f(x)

and one notices that this induces a linear recurrence for f(n).

A matrix A ∈ Qk×k is deterministic if each row has at most one nonzero
entry. A rational function f with linear representation (x,M, y) is deterministic
if Ma,Mb are deterministic and x has at most one nonzero entry.

Exercise 3. Show that there are rational functions which are not deterministic.

Solution: A deterministic rational function never uses the “+” operation. In
other words, if f is deterministic then f(w) is a product of numbers appearing
in x, M , and y. In particular, the image of f cannot contain numbers with
arbitrarily large prime divisors. Now consider the function f(w) = |w|. It is
rational and its image is N. Since there are infinitely many primes, f cannot be
deterministic.

q-finite functions

Given a function f : Σ∗ → Q and a word u ∈ Σ∗, let the left quotient u−1f :
Σ∗ → Q be the function defined as

(u−1f)(w) = f(uw), for every w ∈ Σ∗.

Call a function f q-finite if the set of left quotients{
u−1f | u ∈ Σ∗}

span a finite-dimensional subspace of Σ∗ → Q.

Exercise 4. Show that f is q-finite iff it is rational.

Solution: For the “only if” direction, assume that f is q-finite. There is a
dimension d and this many basis left quotients

f1 := u−1
1 f, . . . , fd := u−1

d f

s.t. every left quotient is a linear combination of f1, . . . , fd. We now construct
a linear representation for f . Consider a basis left quotient fm and extend it
by reading a ∈ Σ to the quotient (uma)−1f . This quotient is not necessarily
a basis element, however it can be written as a (unique) linear combination of
basis elements

(uma)−1f = αm,1 · f1 + · · ·+ αm,d · fd.
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This defines Ma(m,n) := αm,n. To define the initial row vector we write f itself
as

f = α1 · f1 + · · ·+ αd · fd,

giving x = (α1, . . . , αd), and the final column vector is obtained by evaluating

the basis elements at ε, giving y = (f1(ε), . . . , fd(ε))
T
.

Correctness amounts to prove

f(w) = x ·M(w) · y, for all w ∈ Σ∗.

This will follow at once from the following inductive property:

w−1f = x ·M(w) · (f1, . . . , fd)T , for all w ∈ Σ∗.

For w = ε it holds by the definition of x. Inductively we have

(wa)−1f = a−1w−1f =

= a−1(x ·M(w) · (f1, . . . , fd)T ) =

= x ·M(w) ·
(
a−1f1, . . . , a

−1fd
)T

=

= x ·M(w) · (Ma · (f1, . . . , fd)T ) =

= x ·Mwa · (f1, . . . , fd)T .

We have used the inductive assumption, the fact that left quotients act linearly,
and the definition of Ma.

For the “if” direction, assume that f is rational. There is a k-dimensional
linear representation (x,M, y) s.t. f(w) = x ·M(w) · y for every w ∈ Σ∗. The
set of k × k matrices Qk×k is a vector space of dimension k2 (with respect to
matrix addition and scalar multiplication). Now consider the linear span of all
reachable matrices

V := span(M(w) | w ∈ Σ∗) ⊆ Qk×k.

As a subspace of a vector space of dimension k2 it is itself of some finite di-
mension d ≤ k2. Let a basis of V be M1 := Mu1 , . . . ,Md := Mud

. We claim
that f1, . . . , fd is a basis of the vector subspace generated by left quotients of f ,
where for every 1 ≤ i ≤ d,

fi(w) := x ·Mui·w · y, for all w ∈ Σ∗.

First of all, fi is indeed a left quotient of f . Secondly, let u−1f be a left quotient
for f . Since M(u) is in V , by the spanning property of the basis we can write

M(u) = α1 ·M1 + · · ·+ αd ·Md.

For every input word w ∈ Σ∗ we can write

(u−1f)(w) = f(uw) = x ·M(uw) · y =

= x ·M(u) ·M(w) · y =

= x · (α1 ·M1 + · · ·+ αd ·Md) ·M(w) · y =

= α1 · x ·M(u1 · w) · y + · · ·+ αd · x ·M(ud · w) · y =

= α1 · f(u1 · w) + · · ·+ αd · f(ud · w) =
= α1 · (u−1

1 f)(w) + · · ·+ αd · (u−1
d f)(w) =

= α1 · f1(w) + · · ·+ αd · fd(w).
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Since w was arbitrary, we have established u−1f = α1 · f1 + · · · + αd · fd, as
required.

Closure properties

Exercise 5. Show that the set of all q-finite functions is a vector subspace of
Σ∗ → Q.

Solution: This boils down to showing that q-finite functions are closed under
multiplication by constants and by addition. Both verifications are immediate
by applying linearity either to linear representations or to left quotients. (Left
quotienting acts linearly: u−1(α · f) = α · (u−1f) and u−1(f + g) = u−1f +
u−1g).

Exercise 6. Show that the set of q-finite functions is closed under the following
operations.

1. Hadamard product: (f · g)(w) := f(w) · g(w).

2. Cauchy product: (f ∗ g)(w) :=
∑

uv=w f(u) · g(v).

3. Iteration, when f(ε) = 0: f∗ := f0 + f1 + f2 + · · · , where f0(w) is 1 if
w = ε and 0 otherwise, and fn+1 = fn ∗ f for every n ≥ 0.

Solution: 1. Let f1, . . . , fd be a basis for f and g1, . . . , ge one for g. We
claim that quotients of f · g are in the linear span of

{fi · gj | 1 ≤ i ≤ d, 1 ≤ j ≤ e} .

This follows at once since (a) quotients distribute over Hadamard product,
and (b) Hadamard product is bilinear. This shows that the dimension of
f · g is at most d · e, but it could be less.

2. For words u = a1 · · · an, w ∈ Σ∗, by analysing the Cauchy product we have
that u−1(f ∗ g) equals

f(ε)︸︷︷︸
∈Q

·u−1g + f(a1)︸ ︷︷ ︸
∈Q

·(a2 · · · an)−1g + · · ·+ f(a1 · · · an−1)︸ ︷︷ ︸
∈Q

·a−1
n g + u−1f ∗ g.

In other words, left quotients of f ∗ g are linear combinations of left quo-
tients of g and h ∗ g with h a left quotient of f . This suggests that if
f1, . . . , fd is a basis for f and g1, . . . , ge one for g, then left quotients of
f ∗ g are in the linear span of

{fi ∗ g | 1 ≤ i ≤ d} ∪ {gj | 1 ≤ j ≤ e} .

This can be verified thanks to the calculation above and bilinearity of
Cauchy product. Incidentally, this shows that the dimension of f ∗ g is at
most d+ e.

3. First notice that iteration is well-defined, thanks to the condition f(ε) = 0.
Let f1, . . . , fd be a basis for left quotients of f and let f0 := f0. We claim
that left quotients of f∗ are in the linear span of

{f0 ∗ f∗, f1 ∗ f∗, . . . , fd ∗ f∗} .
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We show that every left quotient u−1f∗ is a linear combination of elements
above by induction on the length of u. In the base case, u = ε and thus
ε−1f∗ = f∗ is already the basis element f0 ∗ f∗.

In the inductive case, let u = a1 · · · an have positive length n ≥ 1. We use
again f∗ = f0 + f ∗ f∗ to write

u−1f∗ = u−1(f0 + f ∗ f∗) = u−1f0︸ ︷︷ ︸
0

+u−1(f ∗ f∗) =

= f(ε) · u−1f∗︸ ︷︷ ︸
0

+f(a1) · (a2 · · · an)−1f∗ + · · ·+ f(a1a2 · · · an−1) · a−1
n f∗ + u−1f ∗ f∗.

This shows that u−1f∗ is a linear combination of shorter quotients of f∗

and u−1f ∗ f∗. By the inductive assumption shorter quotients of f∗ are
in the span of the perspective basis. Regarding u−1f ∗ f∗, since u−1f is
a linear combination of f1, . . . , fd, by left linearity u−1f ∗ f∗ is a linear
combination of f1 ∗ f∗, . . . , fd ∗ f∗.

Exercise 7 (Inverses). 1. Under which condition does f have an inverse
w.r.t. Hadamard product? Is Hadamard-invertibility decidable?

2. Under which condition does f have an inverse w.r.t. Cauchy product?

3. In the latter case, find an expression for the Cauchy inverse of f .

Solution: 1. First of all the unit for the Hadamard product is the constantly
1 function. The function f has a Hadamard inverse iff f(w) ̸= 0 for
all w, in which case the Hadamard inverse of f is g defined as g(w) =
1/f(w) for every w ∈ Σ∗. Hadamard invertibility is undecidable, since
the complement problem (is there some w s.t. f(w) = 0) is undecidable
for weighted automata.

2. The unit for the Cauchy product is the function f s.t. f(ε) = 1 and that
is zero everywhere else. Call this function 1 for convenience. In order for
f ∗ g to be the Cauchy unit, it is necessary that f(ε) ̸= 0. In fact this
condition is also equivalent to the existence of a Cauchy inverse, which we
will compute in the next point.

3. First we show how to invert f s.t. f(ε) = 1. Let g = 1− f and we claim
that g∗ is the Cauchy inverse of f . Indeed g∗ is well defined since g(ε) = 0,
and we have

f ∗ g∗ = (1− g) ∗ (g0 + g1 + · · · ) = g0 = 1.

Regular expressions

Exercise 8 (Kleene-Schützenberger theorem). Call a function regular if it can
be generated by the following abstract grammar

f, g ::= p | α · f | f + g | f ∗ g | f∗,

where p is a polynomial (function with finite support) and iteration f∗ is only
applied when defined. Show that a function is regular iff it is rational.
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Solution: The “only if” direction follows by the closure properties of rational
functions. The converse direction is more involved and we give only the proof
idea. Let f be rational, thus there is a linear representation (x, {Ma,Mb} , y),
with Ma,Mb ∈ Qk×k, s.t. f(w) = x ·M(w) · y. Here M is in Σ∗ → Qk×k. The
latter set is naturally endowed by a Kleene algebra structure by the operations
of sum, product, iteration (when defined), and constants 0 and 1:

S =
(
Σ∗ → Qk×k,+S, ·S, ( )∗S, 0S, 1S

)
.

It is fruitful to notice that the latter is isomorphic to the matrix Kleene algebra

M =
(
(Σ∗ → Q)k×k,+M, ·M, ( )∗M, 0M, 1M

)
.

where the definitions of sum, product, and 0, 1 are automatically inherited from
the base ring Σ∗ → Q; iteration is defined as M∗ :=

∑
n M

n (when it exists).

Indeed, we can map a function M ∈ S to the matrix M̃ ∈ M s.t. M̃ij(w) :=
M(w)ij .

The support of a matrix M ∈ M is the union of the supports of all its entries.
Call a matrix M ∈ M regular if it can be finitely generated from matrices of
finite support by the algebra operations. For instance, if M ∈ S is generated by
matrices Ma,Mb ∈ Qk×k in the sense of linear representations, then M̃ ∈ M is
regular since

M̃ = (A+B)∗,

where A,B ∈ M have finite support and are defined as follows: Aij maps a to
the i, j component of Ma, and maps any other word to zero; similarly for B.

Then one shows that if M,N ∈ M are two matrices with all entries regular
(in the sense of S), then the same holds for M +N , M ·N , and M∗. Only the
last case is non-trivial, but it can be shown by induction on the dimension of
M by a suitable rule expressing M∗ in terms of iteration, sum, and product of
submatrices.

Supports

The support of a function f : Σ∗ → Q, denoted supp f , is the set of words where
f is nonzero. A rational support is the support of a rational function. Since we
do not consider any other kind of support, we just say “support” for “rational
support” in the following.

Exercise 9. 1. Show that the class of supports includes all regular lan-
guages.

2. Are there nonregular supports?

Solution: For a language L ⊆ Σ∗, we can define its characteristic function
fL : Σ∗ → Q by mapping words in the language to 1, and the rest to 0. Clearly
the support of fL is L. We now argue that if L is regular, then fL is a ratio-
nal function. It will be convenient to use regular expressions and notice how
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characteristic functions interact with rational operations on languages:

f{ε} = 1

fL∩M = fL · fM (Hadamard product)

fΣ∗\L = 1− fL (where 1 is one everywhere)

fL∪M = fL + fM − fL · fM
fL·M = fL ∗ fM (Cauchy product)

fL∗ = f∗
L. (if ε ̸∈ L)

Finite languages are clearly supports (of polynomials). The proof is concluded
by writing L as a regular expression e and applying the rules above by structural
induction on e, using the closure properties of rational functions.

There are nonregular supports. We show a rational function f whose co-
support is L = {anbn | n ∈ N} (the complement of which is nonregular). Let f =
(g − h)2 + ℓ (Hadamard square), where g(ambn) = 2m3n (and zero otherwise),
h(ambn) = 2n3m (and zero otherwise), and ℓ is the characteristic function of
Σ∗ \ a∗b∗. We have f(w) = 0 if w = anbn and f is nonzero otherwise.

Exercise 10 (Weak cancellation property [1]). A language L ⊆ Σ∗ has the
weak cancellation property if there exists a n ∈ N s.t. no matter how we split
a word w ∈ L as w = xy1 · · · ynz with y1, . . . , yn nonempty, we can always find
i, j ∈ N s.t. 1 ≤ i ≤ j ≤ n and xy1 · · · yi−1yj+1 · · · ynz ∈ L.

1. Show that supports have the weak cancellation property.

2. Find a context-free language which is not a support.

Solution: 1. Let L = supp f be the support of a rational function f with linear
representation (u,M, v) of dimension k. We show that L has the weak cancel-
lation property for n := k. Consider w = xy1 · · · ykz ∈ L. Thus uM(w)v ̸= 0,
and in particular row vectors in the following sequence are nonzero:

uM(x), uM(xy1), . . . , uM(xy1 · · · yk) ∈ Q1×k.

Since there are k+1 vectors in the sequence above and they lie in a k-dimensional
vector space, there is 1 ≤ j ≤ k s.t. the j-th vector is a linear combination of
preceding vectors,

uM(xy1 · · · yj) =
∑

0≤i<j

αi · uM(xy1 · · · yi).

We now right multiply both sides by M(yj+1 · · · yk)v and obtain

uM(w)v =
∑

0≤i<j

αi · uM(xy1 · · · yiyj+1 · · · yk)v.

Since w ∈ L, the r.h.s. is nonzero, thus there is 0 ≤ i < j s.t.

uM(xy1 · · · yiyj+1 · · · yk)v ̸= 0.

This means xy1 · · · yiyj+1 · · · yk ∈ L, as required.
2. Consider the context-free language L = {anbn | n ∈ N}. We show that it

does not satisfy the weak cancellation property. For n ∈ N consider w = anbn

split as wn = xy1 · · · ynz where x = ε, y1 = · · · = yn = a, and z = bn. Clearly
there is no way to remove any infix ui · · ·uj of an from w and remain in L.
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Exercise 11. Are the following problems decidable for supports:

1. emptiness?

2. universality?

3. equivalence?

4. inclusion?

Solution: Emptiness is the same as non-zeroness, thus it is decidable. Non-
universality on the other hand asks whether some word has zero semantics,
which is undecidable. Equivalence and inclusion are more general than univer-
sality, so also undecidable.

Exercise 12. Are supports closed under

1. intersection?

2. union?

3. concatenation?

4. Kleene star?

5. complement?

Solution: The closure properties for the first four points follow by the equations
(since rational functions are closed under the respective operations)

supp f ∩ supp g = supp (f · g), (Hadamard product)

supp f ∪ supp g = supp (f · f + g · g), (Hadamard square)

supp f · supp g = supp (f ∗ g), (Cauchy product)

supp f∗ = supp f∗. (Cauchy iteration)

Supports are not closed under complement: We have seen that anbn is not a
support, however its complement is.
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