
Languages, automata and computation II

Tutorial 3

Winter semester 2023/2024

In this tutorial we explore ideals, varieties, and polynomial automata. Recall
that an ideal of a ring R is a subset I ⊆ R which is 1) closed under sum
I + I ⊆ I, and 2) closed under under product with elements from the ring

R · I ⊆ I. For a set of vectors A ⊆ Qk
, let I(A) ⊆ Q[x1, . . . , xk] be the set

of polynomials vanishing on A. (This is an ideal, justifying the notation). For

a set of polynomials P ⊆ Q[x1, . . . , xk], let V (P ) ⊆ Qk
be the set of vectors

where all polynomials in P vanish simultaneously. The Zariski closure of a set
of vectors A is defined as

A := V (I(A)).

Exercise 1. 1. Show that A ⊆ A, for every A ⊆ Qk
.

2. Find a set of vectors A ⊆ Qk
where the inclusion in the previous point is

strict. Can such a set A be finite?

Solution: The first point follows directly from the definitions. For the second

point, we first notice that A cannot be finite. Indeed if A ⊆ Qk
is finite, then

I(A) = ⟨p⟩ is generated by a single polynomial p which vanishes precisely on A,
and thus V (I(A)) = A. Finally, consider k = 1 and the infinite set A = N. Since
only nonzero univariate polynomials have finitely many zeroes, I(A) = ⟨0⟩ = {0}
is generated by the zero polynomial. Then A = V ({0}) = Q is the whole set of
algebraic numbers.

Exercise 2 (zero polynomial vs. zero polynomial function). Show that p :

Q[x1, . . . , xk] is the zero polynomial iff as a function Qk → Q it is constantly
zero. Is this true if we replace Q by F2 (the field consisting just of the elements
{0, 1})?

Solution: The “only if” direction is obvious (and true also in F2), For the “if”
direction, we proceed by induction on k. The base case k = 0 is trivial. For the
inductive step, we rely on the isomorphism

Q[x1, . . . , xk] ∼= Q[x1, . . . , xk−1][xk].

In other words, we see p as a univariate polynomial in xk over the polynomial
ring not containing xk. A univariate nonzero polynomial has finitely many zeros
and the latter ring is infinite. We can thus find a substitution xk 7→ q where q
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does not contain xk s.t. p does not vanish after this substitution. We now have
a nonzero polynomial without xk and we can apply the inductive assumption.

The “if” direction not hold over F2, for instance x · (1 − x) is not the zero
polynomial, however it evaluates to 0 ∈ F2 for all x ∈ F2.

Exercise 3. Show that I is an ideal of R[x] iff I is a vector subspace of R[x]
over R (i.e., I + I ⊆ I and aI ⊆ I for every a ∈ R) s.t. xI ⊆ I.

Solution: Easy.

Exercise 4. We have seen that I(A) is an ideal of Q[x1, . . . , xk] for every

A ⊆ Qd
. Is every ideal of this ring of this form?

Solution: No. For example I = ⟨x2⟩ is not of the form I(A). Since x2 vanishes
precisely at x = 0, we necessarily have A = {0}, however I({0}) = ⟨x⟩ is strictly
larger than I. For instance, x ̸∈ I.

Ideals of the form I(A) have the special property that pn ∈ I(A) implies
p ∈ I(A) (i.e., they are closed under n-th roots) and those are called radical
ideals. One can then show that all radical ideals are in fact of the form I(A).

Principal ideal rings

Recall that a ring R is a principal ideal ring if every ideal of R is generated by
one element.

Exercise 5. Are the following principal ideal rings?

1. The field of rational numbers Q.

2. The ring of integers Z.

3. The ring of univariate polynomials over the rationals Q[x].

4. The ring of univariate polynomials over the integers Z[x].

5. The ring of bivariate polynomials over the rationals Q[x, y].

6. The quotient ring Q[x, y]/⟨x− y⟩.

Solution: 1. Yes, a field has two ideals {0} and Q = ⟨1⟩, which are both
principal.

2. Yes, ever ideal is of the form “integer multiples of a basis element b ∈ Z”.

3. Yes, one can compute the GCD of all elements of an ideal I ⊆ Q[x], and
this is its generator.

4. No, for instance the proper ideal ⟨2, x⟩ ⊊ Z[x] cannot be generated by
a single polynomial p ∈ Z[x]. Indeed, by way of contradiction we could
write 2 = q · p for some q ∈ Z[x] which forces p = ±2 since the ideal is
proper. But then we cannot have x = r · p = r · 2 for any r ∈ Z[x].

5. No, since ⟨x, y⟩ is not principal.

6. Yes, since the quotient is isomorphic to Q[z].
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Exercise 6. If R is a principal ideal ring, does the same hold for R[x]?

Solution: No, for instance Z[x] is a principal ideal ring, however Z[x][y] is
not.

Noetherian rings

A ring R is Noetherian if every ideal I ⊆ R is finitely generated. In the following
problem we explore ways to construct Noetherian rings.

Exercise 7. 1. Fields are Noetherian.

2. Finite rings are Noetherian.

3. Principal ideal rings are Noetherian.

4. If R is Noetherian and I ⊆ R is an ideal, then R/I is Noetherian.

5. If R is Noetherian, then R[x] is Noetherian. Does the converse hold?

6. If R is Noetherian, then R[[x]] is Noetherian.

Solution: The first three points are obvious.
For point 4. recall that elements of the quotient ring R/I are of the form

a+ I (cosets) with a ∈ R. One can show that the ideals of R/I are in bijection
with the ideals of R containing I. Moreover, J + I ⊆ K + I (as an inclusion
of ideals in R/I) iff J ⊆ K (as an inclusion of ideals in I). Consequently, if we
have an ideal chain in the quotient ring

J0 + I ⊆ J1 + I ⊆ · · · ⊆ R/I

then we have also an ideal chain in the original ring

J0 ⊆ J1 ⊆ · · · ⊆ R,

but since R is Noetherian there is n s.t. Jn ⊇ Jn+1 ⊇ · · · , and thus for the same
n we have Jn + I ⊇ Jn+1 + I ⊇ · · · .

For point 5., let I ⊆ R[x] be an ideal of the polynomial ring. Let In ⊆ R be
the set of all leading coefficients an,i of degree n polynomials in I

fn,i = an,i · xn +O(xn−1) ∈ I.

One can check that I0 ⊆ I1 ⊆ · · · ⊆ R is an ideal chain, and sinceR is Noetherian
there is N ∈ N s.t. IN = IN+1 = · · · . Let In = ⟨Gn⟩ for some finite set
of generators Gn ⊆ R and consider the corresponding finite set of degree n
polynomials

Sn = {fn,i ∈ R[x] | an,i ∈ Gn} .

We claim that S = S0 ∪ · · · ∪ SN generates the whole polynomial ideal I = ⟨S⟩.
By way of contradiction consider a polynomial of minimal degree d

f = ad · xd +O(xd−1) ∈ I \ ⟨S⟩.

We show that there is a polynomial g = ad · xd +O(xd−1) ∈ ⟨S⟩ with the same
leading term ad · xd as f . Since f ∈ I has degree d, we have ad ∈ Id. We have
two cases to consider.
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• For small degree d ≤ N , since Id = ⟨Gd⟩ we write ad as a R-linear combi-
nation of elements from Gd. The same R-linear combination of elements
of the corresponding polynomials in Sd gives us the required polynomial
g = ad · xd +O(xd−1) ∈ ⟨Sd⟩ ⊆ ⟨S⟩.

• For large degree d > N , we use ⟨Gd⟩ ⊆ ⟨GN ⟩ and write ad as a R-linear
combination of elements from GN . The same R-linear combination of
elements of the corresponding polynomials in SN gives us a polynomial
h = ad · xN + O(xN−1) ∈ ⟨SN ⟩ ⊆ ⟨S⟩ of degree N . We then define
g = xd−N · h = ad · xd +O(xd−1) ∈ ⟨S⟩.

But then f − g ∈ I \ ⟨S⟩ has strictly smaller degree than f , which is a contra-
diction.

The converse holds as well. An ideal chain I0 ⊆ I1 ⊆ · · · ⊆ R in the
underlying ring induces an ideal chain ⟨I0⟩ ⊆ ⟨I1⟩ ⊆ · · · ⊆ R[x] in the polynomial
ring. But the latter is Noetherian so ⟨In⟩ = ⟨In+1⟩ = · · · , for some n ∈ N. Since
the constant terms of the sum and product of polynomials depend only on their
constant terms, In = In+1 = · · · .

The argument for point 6. is similar as in the previous point, but instead of
looking at coefficients of terms of highest degree we look at coefficients of terms
of smallest order. We omit the details.

Exercise 8. Are the following rings Noetherian?

1. Ring of polynomials with countably many variables: Q[x1, x2, . . . ].

2. Ring of power series: Q[[x]].

3. Ring of rational power series: Q[[x]] ∩Q(x).

4. Noncommutative ring of power series in noncommuting variables: R :=
Σ∗ → Q, |Σ| ≥ 2, with sum and convolution (Cauchy) product.

Solution: 1. No. The ideal ⟨x1, x2, . . .⟩ is not finitely generated.

2. Yes. This follows from Exercise 7, but we can also give a quick argument
in this particular case since Q is a field. Every power series can be written
as f = xn · (a0 + a1x+ · · · ) where a0 ̸= 0. Since the constant term of the
series on the right is nonzero, the series has an inverse in the ring (i.e., it
is a unit of the ring). It follows that this is even a principal ideal ring,
where every ideal is generated by ⟨xn⟩ for some n ∈ N.

3. Yes, since this is in fact a field and all fields are Noetherian.

4. No. Let Σ = {a, b} and consider the right ideal

I := a ·R+ ba ·R+ b2a ·R+ · · · .

I cannot be generated by finitely many
{
b0a, . . . , bna

}
since bn+1a ∈ I

cannot be written as a right linear combination of the generators.

Exercise 9. For every of the following sets A check that it is a ring. Is it
Noetherian?
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1. A = x ·Q[x] ⊆ Q[x].

2. A = Z+ x ·Q[x] ⊆ Q[x].

Solution: 1. Yes, since this is isomorphic to the polynomial ring Q[x].

2. No, the ideal of elements with zero constant term I = x · Q[x] is not
finitely generated over A. By way of contradiction, suppose it was finitely
generated by f1, . . . , fn ∈ I. We can write fi = αi · x + O(x2) with
αi ∈ Q. Then an arbitrary f = α · x + O(x2) ∈ I can be written as a
linear combination of the generators f = g1 · f1 + · · · + gn · fn for some
g1, . . . , gn with integer constant terms k1, . . . , kn ∈ Z. It follows that
α = k1 · α1 + · · ·+ kn · αn, however the rational numbers on the right can
only generate finitely many denominators.

Polynomial automata

Recall that a polynomial automaton is a tuple

A = (d,Σ, Q, qI , p, F )

where d ∈ N is the dimension, Σ is a finite alphabet, Q = Qd
is the set of states,

qI ∈ Q is the initial state, p : Σ → Q[d]d is a collection of tuples of polynomials
inducing a polynomial action on states

q ∈ Q 7→ q · a ∈ Q, for every a ∈ Σ,

where q · a := pa(q) = (pa1(q), . . . , p
a
d(q)), and F : Q → Q is the polynomial

output function. The action of Σ is extended to words w ∈ Σ∗ homomorphically:
q ·ε := q and q · (a ·w) := (q ·a) ·w. The semantics of state q ∈ Q is the mapping
JqK : Σ∗ → Q defined as

JqKw = F (q · w), for every w ∈ Σ∗.

The semantics of the automaton A is JAK = JqIK. The automaton is zero if
JAK = 0.

The set Σ∗ → Q has the structure of a commutative ring w.r.t. addition and
Hadamard product (pointwise product). This gives us an alternative presenta-
tion of the semantics of polynomial automata.

Exercise 10. Show that a function f : Σ∗ → Q is recognisable by a polynomial
automaton iff its reversal fR belongs to a finitely generated subring of Σ∗ → Q
closed under left quotients u−1(·).

Solution: For the “only if” direction, let A be the automaton recognising f .
Let the transition function of A for coordinate i ∈ {1, . . . , d} and letter a ∈ Σ be
realised by pai ∈ Q[x1, . . . , xd]. Let fi : Σ

∗ → Q be defined as fi(w) = πi(qI ·wR),
i.e. the value of state i after reading wR from the initial state. Then the subring
S := Q[f1, . . . , fd] of Σ∗ → Q generated by f1, . . . , fd satisfies the following
properties:

1. fR is in S since fR = F (f1, . . . fd).
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2. S is closed under single letter quotients (and thus under arbitrary quo-
tients): Quotients commute with Hadamard product, so it suffices to show
that a−1fi is in R. This holds since a−1fi(w) = fi(aw) = πi(qI ·(wR ·a)) =
pai (f1(w), . . . , fd(w)).

For the “if” direction, let S = Q[f1, . . . , fd] be closed under left quotients
and fR ∈ S. It follows that a−1fi can be written as a polynomial combination
of f1, . . . , fd say a−1fi = pai (f1, . . . , fd). This gives us the transition structure of
a polynomial automaton of dimension d. The output function is the polynomial
F s.t. fR = F (f1, . . . , fd), which exists since fR ∈ R.

Exercise 11. Consider the following computational model B. States are tuples
of polynomials S = Q[d]d, with pI := (x1, . . . , xd) being the initial state and
F : S → Q a polynomial output function. The update function is described
by a tuple of polynomials pa = (pa1 , . . . , p

a
d) ∈ Q[d]d, one for each a ∈ Σ, by

polynomial substitution as follows:

p 7→ p · a := p(pa) ∈ S, for every a ∈ Σ.

In other words, in the current state p we replace x1 by pa1 , . . . , xd by pad.
This is extended homomorphically to Σ∗ → S. For instance pI ·ab = pa(pb) and
pI ·abc = pa(pb)(pc) = pa(pb(pc)). The output on reading w is JBKw = F (pI ·w).
Decide zeroness for B.

Solution: Model B recognises precisely the reversal of the semantics of a poly-
nomial automaton A in the sense that JBKa1···an

= JAKan···a1
. Automaton A

thas the same polynomial dynamics pa as B. For example, for s ∈ Qd a state
of A we have s · abc = pc(pb(pa(s))).

A variety is a subset V ⊆ Qd
which is the set of common zeros of a set of

polynomials: V = V (P ) for some P ⊆ Q[x1, . . . , xd].

Exercise 12. For d = 2 find a non-trivial infinite variety.

Solution: Take V = V ({x · y}), then V is the union of the x and y axes.

Exercise 13. Let V ⊆ Qd
be a variety.

1. Let g : Qe → Qd
be a polynomial map. Is g−1(V ) ⊆ Qe

a variety?

2. Let g : Qd → Qe
be a polynomial map. Is g(V ) ⊆ Qe

a variety?

Solution: 1. Yes. Let V = V (P ) for a set of polynomials P ⊆ Q[x1, . . . , xd].

If we see p ∈ P as a polynomial map Qd → Q we have V =
⋂

p∈P p−1({0}).
Since polynomial maps are closed under composition, the following set is
also a variety:

g−1(V ) = g−1(
⋂
p∈P

p−1({0})) =
⋂
p∈P

g−1(p−1({0})) =
⋂
p∈P

(p ◦ g)−1({0}) =

= V ({p ◦ g | p ∈ P}).

2. No, already for d = e = 1. Take g(x) = x2 and the trivial variety V =
V ({0}) = Q. Then g(V ) = Q≥0, which is not a variety.
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Exercise 14. Show that all real varieties V ⊆ Rd are generated by a single
polynomial. Is this true for varieties of Cd?

Solution: By Hilbert finite basis theorem we can write V = V (p1, . . . , pn). We
then observe that V = V (p) with

p = p21 + · · ·+ p2n.

This trick does not work over the complex numbers, and in fact one can show
that single polynomials are not sufficient to generate all complex varieties.

Exercise 15. Let U, V ⊆ Qd
be a varieties. Are the following varieties?

1. U ∩ V . What about possibly infinite intersections?

2. U ∪ V . What about possibly infinite intersections?

3. U \ V .

Solution: 1. Yes, since V (P ) ∩ V (Q) = V (P ∪ Q). In fact this shows that
varieties are closed under arbitrary intersections.

2. Yes. By Hilbert finite basis theorem we can write U = V (p1, . . . , pm) and
V = V (q1, . . . , qn). Then U ∪ V = V ({pi · qj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}).
Varieties are not closed under infinite unions. For instance Vi := {i} ⊆ Q
are singleton varieties for i ∈ Z, however their union Z is not a variety.

3. No. For instance nonempty finite sets are varieties of Q, however their
complements are not.

Exercise 16. For each direction of the statements below, prove it if it holds,
or find a counter-example otherwise.

1. For sets A,B ⊆ Qd
: A ⊆ B iff I(B) ⊆ I(A).

2. For sets of polynomials P,Q ⊆ Q[x1, . . . , xd]: P ⊆ Q iff V (Q) ⊆ V (P ).

3. For varieties U, V ⊆ Qd
: U ⊆ V iff I(V ) ⊆ I(U).

Solution: 1. The “only if” direction clearly holds. The other direction is
false: For d = 1, A = Q and B = Z generate the same (trivial) ideal
I = {0}

2. The “only if” direction clearly holds. The other direction is false, even
for ideals: Take d = 1, P = ⟨x⟩, Q = ⟨x2⟩ s.t. V (Q) = V (P ) = {0} but
x ∈ P \Q.

3. We just need to check the “if” direction. Let U = V (I) and V = V (J) for
polynomial ideals I, J which can be chosen to be radical, so that I(U) = I
and I(V ) = J . Thus we have J ⊆ I, and we conclude U ⊆ V by the
previous point.
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In the next problem we explore an algorithm to decide zeroness of polynomial
automata.

Exercise 17. Consider the set of states Vn ⊆ Q which give zero after reading
words of length ≤ n:

Vn =
{
q ∈ Q | ∀w ∈ Σ≤n : q · w = 0

}
.

1. Show that the automaton is zero iff qI ∈
⋂

n Vn.

2. Show that V0 ⊇ V1 ⊇ · · · ⊇
⋂

n Vn is a nonincreasing chain of varieties.
Conclude that the chain stabilises at some finite level: There is N ∈ N
s.t. VN = VN+1 = · · · =

⋂
n Vn.

3. Show that for every n ∈ N, Vn = Vn+1 implies n = N .

4. Let Pn be a finite set of polynomials s.t. Vn = V (Pn). Show that we can
compute a finite set of polynomials Pn+1 s.t. Vn+1 = V (Pn+1).

5. Show how to decide V (P ) = V (Q) for two finite set of polynomials P,Q ⊆
Q[d].

6. Conclude with an algorithm for zeroness.

Solution: The first point is clear. For the second point, V0 is a variety since
V0 = F−1({0}), {0} is a variety, and inverse polynomial maps preserve varieties.
Then inductively

Vn+1 = Vn ∩
⋂
a∈Σ

a−1Vn (1)

is also a variety since varieties are closed under intersection and inverse images
of polynomial maps. To the nonincreasing chain of varieties we associate a
nondecreasing chain of ideals

I0 ⊆ I1 ⊆ · · · ⊆ Q[x1, . . . , xd], with Ii := I(Vi) for all i ∈ N.

By Hilbert finite basis theorem, there is N ∈ N s.t. IN = IN+1 = · · · . Since
I(U) = I(V ) implies U = V for any two varieties U, V , we have VN = VN+1 =
· · · .

The inductive characterisation from (1) also proves the third point.
For the fourth point, we can initially take P0 = {F}. Inductively, assume

we have computed Pn s.t. Vn = V (Pn). We have

Vn+1 = V (Pn) ∩
⋂
a∈Σ

a−1V (Pn) =

= V (Pn) ∩
⋂
a∈Σ

V ({p ◦ pa | p ∈ Pn}) =

= V (Pn ∪ {p ◦ pa | p ∈ Pn}),

thus we can take Pn+1 = Pn ∪ {p ◦ pa | p ∈ Pn}.
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The variety equality problem from the fifth point can be decided by resorting
to Tarski’s algebra. Indeed V (P ) = V (Q) precisely when the following sentence
holds in (R,+, ·):

∀x1, . . . , xd.
∧
p∈P

p(x1, . . . , xd) = 0 ↔
∧
p∈Q

p(x1, . . . , xd) = 0

These ingredients give rise to an algorithm to decide zeroness of polynomial
automata. We construct the sequence of finite sets of polynomials P0, P1, . . .
and we stop at the smallest index n s.t. V (Pn) = V (Pn+1). We then answer yes
iff qI ∈ V (Pn). Due to the previous points, 1) the algorithm is correct, and 2)
each step is effective.

Exercise 18. Provide a coRP algorithm (randomised polynomial time) for the
following problem: Given a polynomial automaton A and an input word w ∈ Σ∗,
decide whether JAKw = 0.

Solution: We can write an arithmetic circuit of polynomial size computing
JAKw. We then invoke the fact that zeroness testing is in coRP (this a special
case of polynomial identity testing).

Exercise 19. Give an algorithm for the following problem: In input we are
given a polynomial automaton A and a finite automaton B recognising a regular
language L ⊆ Σ∗. In output we answer whether for every w ∈ L we have
JAKw = 0.

Solution: We can assume B is deterministic, so that as a weighted automaton
it takes values in {0, 1}. We then take the Hadamard product C of A and B,
which is again a polynomial automaton, whose support is the intersection of
supports. This means that no counter-example to zeroness is lost. We then
solve zeroness for C.
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