
Languages, automata and computation II

Tutorial 4

Winter semester 2023/2024

In this tutorial we study automata theory in sets with atoms.

Sets with atoms

In this tutorial we explore sets with atoms. Fix a countable set A and consider
the relational structure A = (A,=) over the signature consisting only of equality.
Elements of A are called atoms and automorphisms α of this structure are the
bijections of A. Automorphisms are extended to sets homomorphically, e.g.,
α (x, y) = (αx, αy).

A set with atoms is any set built from set constructors and atoms from A.
An automorphism α fixes a set with atoms x if αx = x. Fix a tuple ā ∈ An. An
ā-automorphism is an automorphism fixing ā. A set with atoms x is supported
by ā if it is fixed by every ā-automorphism, and it is equivariant if it is supported
by the empty tuple (). A set with atoms is finitely supported if it is supported by
some tuple of atoms, and it is legal if it is finitely supported and all its elements
are legal (this is a recursive definition).

The orbit of element x is the set orbit(x) = {αx | automorphism α} of el-
ements which can be obtained by applying some automorphism to x. Thus
an equivariant set x is a union of orbits (of its elements), and an equivari-
ant set is orbit finite if this union is finite. The set of orbits of a set x
is Orbits(x) = {orbit(y) | y ∈ x} (this is a partition of x). For instance, for
given a, b ∈ A with a ̸= b, we have orbit(a, a) =

{
(c, d) ∈ A2 | c = d

}
and

orbit(a, b) =
{
(c, d) ∈ A2 | c ̸= d

}
. Since there are no more orbits in A2, we

have Orbits(A2) = {orbit(a, a), orbit(a, b)} and A2 is the union of two orbits.

Exercise 1. Fix the equality atoms (A,=). For each of the following sets with
atoms decide whether they are 1) legal, 2) equivariant, 3) orbit finite.

1. A2.

2. A∗ := A0 ∪ A1 ∪ A2 ∪ · · · .

3. Aω := {a1a2 · · · | a1, a2, · · · ∈ A}.

4. 2A := {B | B ⊆ A} (powerset).

5. 2Afin := {B | B ⊆ A, B finite} (finite powerset).

6. 2Afs := {B | B ⊆ A, B finitely supported} (finitely supported powerset).

1

7. 2Aeq := {B | B ⊆ A, B equivariant} (equivariant powerset).

Solution: 1. A2 is legal, equivariant, and it has two orbits.

2. A∗ is legal, equivariant, and it has infinitely many orbits, since words of
different length cannot be in the same orbit.

3. Aω is equivariant and it has infinitely many orbits. It is not legal since it
has elements without a finite support such as w = a1a2 · · · where all the
ai ∈ A are pairwise distinct.

4. The unrestricted powerset is illegal, equivariant, and orbit-infinite.

5. The finite powerset is legal, equivariant, and orbit-infinite, since subsets
of different sizes cannot be in the same orbit.

6. The finitely supported powerset is legal, equivariant, and orbit-infinite.

7. The equivariant powerset is legal, equivariant, and contains just two ele-
ments: ∅ and A.

Exercise 2. An atom structure A is called oligomorphic if An is orbit-finite for
every n ∈ N. Are the following atom structures oligomorphic?

1. (N,=).

2. (Z,≤).

3. (Q,≤).

4. (Q,+).

Solution: 1. Yes.

2. No, since already Z2 has infinitely many orbits. Automorphisms of this
structure are integer translations α(x) = x + k, k ∈ Z. Consequently, all
pairs in the orbit of (x, y) ∈ Z2 have the same y − x value. In particular
(0, 0), (0, 1), (0, 2), . . . , are all in pairwise distinct orbits.

3. Yes.

4. Automorphisms of (Q,+) satisfy α(0) = 0 and α(x + y) = α(x) + α(y).
Consequently, for every rational x ∈ Q, if we write x = p/q for integers
p, q ∈ Z we have p ·x = q and by applying α to both sides α(p ·x) = p ·α(x)
and α(q) = q · α(1). Consequently,

α(x) = x · α(1).

Consequently α is uniquely determined by how it acts on 1, and thus the
automorphisms of this structure are of the form α(x) = k · x for some
k ∈ Q. It follows that applying α to a pair (x, y) preserves the ratio y

x .
Thus Q2 has infinitely many orbits.

2

Exercise 3. Consider an orbit-finite set X and an equivariant relation R ⊆
X × X. For every n ∈ N, let Rn = R0 ∪ R1 ∪ R2 ∪ · · · ∪ Rn. Show that the
following chain computing the reflexive-transitive closure of R terminates:

R0 ⊆ R1 ⊆ · · · ⊆ X ×X.

Solution: Each Rn is an equivariant subset of X ×X: R0 is just the identity
relation, which is equivariant, and equivariant relations are closed under compos-
tion and union. Since X×X is orbit-finite (X being orbit-finite and the equality
atoms being oligomorphic), Rn is a union of finitely many orbits of X×X. One
can then show that there is some n ≤ |Orbits(X×X)| s.t. Rn = Rn+1 = · · · .

Orbit-finite automata

Fix an oligomorphic atom structure A, which will usually consist of a count-
able set with equality (A,=). A orbit-finite automaton (OFA) is a tuple A =
(Σ, Q, I, F,∆) where Σ is a orbit-finite input alphabet (often Σ = A), Q is a
orbit-finite set of states, I, F ⊆ Q are equivariant subsets of Q (thus orbit-
finite), called initial, resp., final states, and ∆ ⊆ Q × ΣQ is an equivariant set
of transitions (thus orbit-finite).

Exercise 4. Consider an orbit-finite automaton with input alphabet Σ̂ := Σ×A
where Σ is finite. Consider the following projection mapping π : Σ̂∗ → Σ∗ which
forgets the data part of a word:

π : (σ1, a1) · · · (σn, an) 7→ σ1 · · ·σn.

Show that the projection πL ⊆ Σ∗ of a data language L ⊆ Σ̂∗ recognised by an
orbit-finite automaton is a regular language.

Solution: Let A =
(
Σ̂, Q, I, F,∆

)
be a OFA. Build a NFAB whose states are

orbits of Q, initial states are orbits of I, and final states are orbits of F . A
transition (p, (σ, a) , q) ∈ ∆ of A induces a transition orbit(p)

σ−→ orbit(q) of B.
One then shows that L(B) = πL(A).

The following is a summary of (non)-closure properties of languages of finite
data words recognised by OFA and its deterministic variant.

∪ ∩ R Σ∗ \
Deterministic OFA ✓ ✓ × ✓
Nondeterministic OFA ✓ ✓ ✓ ×

Exercise 5. Show a nondeterministic OFA language which is not recognised by
a deterministic OFA.

Solution: Consider the language of all words w ∈ A∗ s.t. the last letter appears
at least twice:

L = {a1 · · · an ∈ A∗ | there is 1 ≤ i < n s.t. ai = an} .

This language is OFA recognisable, in dimension one: The automaton guesses
the occurrence of ai and checks that it appears at the end of the word.

3

This language is not recognisable by a deterministic OFA. By way of con-
tradiction, let A be a deterministic OFA recognising L. Build a long word of
pair-wise distinct letters w = a1 · · · an ̸∈ L and look at the corresponding run
of the automaton

I ∋ q0
a1−→ q1

a2−→ · · · an−→ qn.

There is some n ∈ N s.t. some ai is not in the support of the last state,

ai ̸∈ supp qn.

Let b ∈ A be a fresh input symbol. Since w ·b ̸∈ L, the extended run is rejecting:

I ∋ q0
a1−→ q1

a2−→ · · · an−→ qn
b−→ q ̸∈ F.

Let α be any atom automorphism fixing supp qn s.t. α(b) = a. In particular,
α(qn) = qn. The following modified run

I ∋ q0
a1−→ q1

a2−→ · · · an−→ qn = α(qn)
α(b)−→ α(q) ̸∈ F.

shows w ·a ̸∈ L(A) since F is equivariant (and thus the same applies to its com-
plement) and the automaton is deterministic. Since w · a ∈ L, this contradicts
L(A) = L.

The previous exercise is subsumed by the following one (since determinstic
OFA are closed under complement).

Exercise 6. Show that the class of nondeterministic OFA languages is not
closed under complement.

Solution: Consider the language L ⊆ A∗ containing all words where a data
value appears at least twice, which is easily seen to be OFA-recognisable. By
way of contradiction, assume that its complement is recognised by some OFA A.
Consider a very long word w = a1 · · · an ∈ Σ∗ of pairwise distinct data values,
and look at some accepting run of A when reading it

I ∋ q0
a1−→ q1

a2−→ · · · an−→ qn ∈ F.

For n sufficiently large there are indices 1 ≤ i ≤ j < k ≤ n s.t. ai, ak ̸∈ supp qj .
There exists an atom automorphism α which fixes supp qj (and thus α(qj) = qj)
s.t. α(ai) = ak. The following run is also accepting

I ∋ α(q0)
α(a1)−→ · · · α(aj)−→ α(qj) = ai

aj+1−→ · · · an−→ qn ∈ F.

and thus w′ = α(a1) · · ·α(aj)aj+1 · · · an ∈ L(A). However the data value ak
appears at least twice in w′, thus w′ ∈ L, which is a contradiction.

Exercise 7. Show that the class of deterministic OFA languages is not closed
under reversal.

Solution: The language “the last letter appears at least twice” from the so-
lution of Exercise 5 cannot be recognised by a deterministic OFA, however its
reversal can.

4

Exercise 8. Show that the class of non-guessing OFA languages is not closed
under reversal.

Solution: Consider the language L of all words w ∈ A∗ s.t. “the first letter
appears exactly once”. This can be recognised by a determinstic OFA, which is
non-guessing. Its reversal LR contains all words where “the last letter appears
exactly once”. We show that it cannot be recognised without guessing. By way
of contradiction let A be a non-guessing OFA recognising LR. Consider a long
word w = a1 · · · an ∈ A∗ with pairwise distinct data values. Since w ∈ L(A),
there is an accepting run

I ∋ q0
a1−→ · · · an−1−→ qn−1

an−→ qn ∈ F.

There is ai ̸∈ supp qn−1. Since the automaton is without guessing supp qn−1 ⊆
{a1, . . . , an−1}, and since an is fresh also an ̸∈ supp qn−1. There is an automor-
phism α that 1) fixes all elements in supp qn−1 (and in particular α(qn−1) =
qn−1), and 2) maps ai to α(ai) = an. The following run is also accepting

I ∋ α(q0)
α(a1)−→ · · · α(an−1)−→ α(qn−1)

an−→ qn ∈ F,

however it accepts a word where the last letter an appears twice, which is a
contradiction.

Exercise 9 (Universality is undecidable for nondeterministic OFA). Consider
the data alphabet Σ̂ = Σ × A ∪ {$} with Σ finite and $ ̸∈ Σ. Consider the
following data language

L = {w$w | w = (b1, a1) · · · (bn, an) and the ai’s are pairwise distinct} .

Show that the complement Σ̂∗ \ L of L can be recognised by

1. A nonguessing OFA of dimension two (two registers in the sense of register
automata).

2. A nondeterministic OFA of dimension one, which uses guessing.

Solution: A case analysis on all kind of mistakes in the encoding yield the
required automaton.

Exercise 10 (Emptiness is PSPACE-complete for OFA). Show that the empti-
ness problem for OFA is PSPACE complete.

Proof. For the PSPACE upper bound, we just orbitise the OFA A producing
an NFA B (of exponential size) for which the emptiness question has the same
answer, and then we check in NL that B is nonempty. This gives a NPSPACE al-
gorithm for nonemptiness of A, and thus a PSPACE algorithm by courtesy of
Savitch’s theorem.

Regarding PSPACE-hardness, we reduce from emptiness of intersection of
many NFA’s A1, . . . , An, which is a PSPACE-hard problem. The idea is to con-
struct a register automaton A without input such that a tuple of registers r̄i
encodes the current control location of Ai. We can assume that Ai has n states
thus a tuple of n+1 registers r̄i suffices: Automaton Ai is in state j ∈ {1, . . . , n}
iff register j in r̄i equals register 0 in r̄i.

5

Exercise 11. Consider the following decision problem. In input we are given
a nondeterministic OFA A and a deterministic OFA B. In output we answer
yes iff L(A) ⊆ L(B). Is this problem decidable? What if B is an unambiguous
OFA?

Proof. Yes. We can complement B into some deterministic OFA B′, and then
check that L(A) ∩ L(B′) is empty.

If B is merely unambiguous this does not work anymore (unambiguous
OFA are not closed under complement, even in the space of all OFA). However
we can turn A into a deterministic OFA A′ and B into a unambiguous OFA B′

s.t. the answer to language inclusion is the same. Now by complementing A′

into A′′ we can check universality of

L(B′) ∩ L(A′) ∪ L(A′′).

The latter language can be recognised by a unambiguous OFA: 1) L(A′′) is
deterministic, so unambiguous, 2) L(B′) ∩ L(A′) is unambiguous, 3) the two
previous languages are disjoint, so that their union is also unambiguous.

6

