
Languages, automata and computation II

Tutorial 5

Winter semester 2023/2024

In this tutorial we study well-quasi orders with some applications in theo-
retical computer science.

Well-quasi orders

Exercise 1. Let (X,⪯) be a preorder (a.k.a. quasi-order). Show that the
following conditions are equivalent.

1. Every infinite sequence x1, x2, · · · ∈ X contains a domination: xi ⪯ xj for
some i < j.

2. Every infinite sequence x1, x2, · · · ∈ X contains a monotone infinite sub-
sequence: xi1 ⪯ xi2 ⪯ · · · for some i1 < i2 < · · · .

3. (X,⪯) is well-founded (no infinite strictly decreasing sequences x1 ≻ x2 ≻
· · · ) and all antichains are finite (an antichain is a set of pairwise incom-
parable elements).

4. Every upward closed set is the upward closure of a finite set.

5. Every nondecreasing chain of upward closed sets U1 ⊆ U2 ⊆ · · · ⊆ X is
finite.

Solution: (1 ⇒ 2) Assume each xi is dominated by finitely many elements to its
right. We can then take the subsequence of elements which are not dominated
by any element to their right. This sequence is infinite and does not have any
domination by construction.
(2 ⇒ 1) This is trivial.
(1 ⇒ 3) Well-foundedness is obvious. Now consider an antichain A ⊆ X. If
it is infinite, then we arrange its elements into an infinite sequence. By the
assumption we can find (in particular) a domination, contradicting that A is an
antichain.
(3 ⇒ 1) Consider the set of minimal elements of the infinite sequence. This is
an antichain, so it must be finite. Take any element in the sequence not from
this finite set, and it is preceded by a smaller element, yielding a domination.
(3 ⇒ 4) Let U ⊆ X be upward closed and consider the subset of its elements
M which are not dominated by any element in U (minimal elements). Clearly
U is the upward closure of M and the latter set is an antichain, thus finite by
assumption.

1



(4 ⇒ 3) Clearly antichains must be finite. Regarding well-foundedness, by
way of contradiction assume we have an infinite strictly decreasing sequence
x1 ≻ x2 ≻ · · · . Then the upward closure of its elements is not the upward
closure of a finite set, which is a contradiction.
(4 ⇒ 5) The upward closed set U1 ∪ U2 ∪ · · · . By assumption it is the upward
closure of finitely many elements B = {x1, . . . , xn}. Take the first Un s.t. B ⊆
Un and we have Un = Un+1 = · · · .
(5 ⇒ 4) Let U ⊆ X be an upward closed set and consider the set of its minimal
elements M = {x1, x2, . . . } (if there are ties just select arbitrarily an element
from each minimal equivalence class). Now consider the chain generated by
the upward closure of {x1}, {x1, x2}, etc. By assumption, this chain is finite,
therefore there is n s.t. the upward closure of {x1, . . . , xn} is the same as that
of M itself, which is just X.

Exercise 2. Which of the following preorders are well-quasi orders?

1. N2 with the lexicographic order;

2. {a, b}∗ with the lexicographic order;

3. N with the divisibility partial order;

4. {a, b}∗ with the prefix order;

5. {a, b}∗ with the infix order;

6. intervals of N with the following order:

[a, b] ⪯ [c, d] if b < c ∨ (a = c ∧ b ≤ d);

7. graphs with the subgraph order (remove some edges and some vertices).

Solution: 1. Yes, by Dickson’s lemma even the smaller pointwise order is a
wqo.
2. No, we have the ill-founded sequence b ≻ ab ≻ aab ≻ · · · .
3. No, the set of primes forms an infinite antichain.
4. No, we have the infinite antichain {a, ba, bba, . . . }.
5. No, we have the infinite antichain {aba, abba, abbba, . . . }.
6. Yes. The order is well-founded since [a, b] ≺ [c, d] implies a+ b < c+ d in N.
There are no infinite antichains: By way of contradiction, let A be an infinite
antichain. Fix an element [a, b] ∈ A. Now look at some other [c, d] ∈ A. Since
these two elements are incomparable, from the first condition we have 0 ≤ c ≤ b.
This yields only finitely many options for c, so there must be two elements [c, d1]
and [c, d2] in A, which are comparable, yielding a contradiction.
7. No. The order is well-founded by it contains the infinite antichain consisting
of cycles of length 2, of length 3, etc.

Exercise 3. Show that if (X,⪯X) and (Y,⪯Y ) are well-quasi orders, then the
following are also well-quasi orders:

1. The product order (X × Y,⪯X×Y ), where

(x0, y0) ⪯X×Y (x1, y1) if x0 ⪯X x1 and y0 ⪯Y y1.

Deduce Dickson’s lemma on Nk.
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2. The subword order (X∗,⪯X∗), where

x0 · · ·xm ⪯∗
X y0 · · · yn

if there exists a subsequence yi0 , . . . , yim s.t. x0 ⪯X yi0 , . . . , xm ⪯X yim .
Deduce Higman’s lemma on Σ∗. (In fact, this also easily implies Dickson’s
lemma.)

3. What about the suborder over infinite words (Xω,⪯Xω )?

Solution: 1. Let (x0, y0) , (x1, y1) , . . . be an infinite sequence in X × Y . By
looking at the first component we can find an infinite monotone subsequence
xi0 ⪯X xi1 ⪯X · · · . Now we look at the second component yi0 , yi1 , · · · ∈ Y and
we can find a domination yij ⪯Y yik . We thus get the required domination in
the product order

(
xij , yij

)
⪯X×Y (xik , yik).

2. Call a sequence u0, u1, . . . bad if there is no domination ui ⪯∗ uj with i < j.
By way of contradiction, assume we have a bad sequence as above. We can also
assume that each un has minimal length amongst all bad sequences starting
with the same prefix u0, . . . , un. Since not un can be empty, we can write
vn := an · un. By the well quasi ordering on X, there is an infinite ordered
subsequence

an0
⪯X an1

⪯X · · · .

Consider now the new sequence

u0, u1, . . . , un0−1, vn0 , vn1 , . . . .

This sequence is bad, since a domination therein would result in a domination
in the original sequence, and it is not minimal since vn0

is strictly shorter than
un0

, leading to a contradiction.
3. The new quasi-order ⪯Xω needs not be a well-quasi order. TODO.

Applications

Exercise 4. Let V be a d-dimensional VASS and consider a target configuration
t ∈ P × Nd, where P is a finite set of control locations. Show that one can
compute the set of all configurations s which can cover t.

Solution: Consider the following chain of sets:

U0 ⊆ U1 ⊆ · · · ⊆ Nd,

where Un is the set of all configurations that can cover s is ≤ n steps. Order
configurations by (p, x̄) ≤ (q, ȳ) if p = q and x̄ ≤Nk ȳ. This is a well quasi order.
Clearly, Un is upward closed w.r.t. “≤”. It follows that the chain terminates,
yielding finitely many minimally elements B = {s1, . . . , sm} whose upward clo-
sure generates

⋃
n Un. One can thus guess B and for element si ∈ B thereof

check that the set of one-step predecessors of si (finitely many) is in the upward
closure of B.

Exercise 5. Let V be a d-dimensional VASS and consider a source config-
uration s ∈ Nd. Show that one decide whether there are only finitely many
configurations reachable from s.
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Solution: Consider the following reachability tree. The root is labelled by the
initial configuration s ∈ Nd. Whenever a node is labelled by a configuration
x ∈ Nd and there is a transition x → x + v with v ∈ V , then this node has a
children node labelled with x+v. The reachability tree is infinite in general. We
now prune the reachability tree as follows. On every infinite branch, stop as long
as a configuration y has a smaller ancestor x ≥ y. We call this a domination. In
this way all branches become finite. Since the tree is finitely branching, overall
we get a finite tree by König’s lemma. There are infinitely many reachable
configurations iff there is a strict domination y ≥ x with y ̸= x.

In the next exercise we apply well-quasi orders to deciding the universality
problem of nonguessing register automata with one register, over equality atoms.
Since the problem is undecidable for two registers, or one register with guessing,
this completes the decidability border for the universality problem of register
automata.

Exercise 6. Consider a nonguessing register automaton with one register, con-
trol locations in L, initial locations I ⊆ L, and final locations F ⊆ L. The
set of states is S = L × A⊥ and the set of macrostates is M = 2Sfin. For two
macrostates P,Q ∈ M , write P → Q if there exists an input letter a ∈ A s.t.

Q =
{
q ∈ S | p a−→ q for some p ∈ P

}
.

1. A macrostate is rejecting if it does not intersect F × A⊥. Argue that the
automaton is not universal iff there is a rejecting macrostate Q s.t. I ×
{⊥} →∗ Q.

2. A simulation relation on macrostates is a binary relation ⊑ ⊆ M × M
s.t. for every macrostate P,Q ∈ M with P ⊑ Q:

(a) Q rejecting implies P rejecting, and

(b) for all Q → Q′ there is P → P ′ s.t. P ′ ⊑ Q′.

Show that ⊆ is a simulation relation on macrostates. Is it a well quasi
order?

3. For two macrostates P,Q, write P ≤ Q iff there is an atom automorphism
α s.t. α(P ) ⊆ Q. Show that ≤ is a simulation relation on macrostates.

4. Show that ≤ is a well quasi order.

5. Show that ≤ is decidable.

6. Deduce an algorithm to decide the universality problem.

Solution: 1. This is clear.

2. This is also clear. It is not a well quasi order since there are infinite antichains
such as {{(q, a1)} , {(q, a2)} , . . . }.

3. Let P ≤ Q and Q → Q′. There is an automorphism α s.t. α(P ) ⊆ Q Since ⊆
is a simulation, there is P ′ ⊆ Q′ s.t. α(P ) → P ′. Since α is an automorphism, we
can apply its inverse to both sides of α(P ) → P ′ and we obtain P → α−1(P ′).
If we define P ′′ := α−1(P ′) we have P ′′ ≤ Q′.
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4. For a macrostate P and a location ℓ ∈ L, let atoms(P, ℓ) = {a ∈ A | (ℓ, a) ∈ P}
be the set of atoms appearing with location ℓ in P . The profile of a macrostate
P records the following information:

1. For each control location ℓ ∈ L, whether (ℓ,⊥) is in P .

2. For each nonempty set of control locations Z ⊆ L, the number of distinct
atoms jointly appearing precisely in Z,

|atoms(P,Z)|, where atoms(P,Z) :=
⋂
ℓ∈Z

atoms(P, ℓ) ∩
⋂
ℓ ̸∈Z

(A \ atoms(P, ℓ)).

In other words, a ∈ atoms(P,Z) iff Z = atoms−1(P, a). Let profile(P ) ∈
2L × N2L\{∅} be the profile of P . Let profile(P ) ⪯ profile(Q) with subset
inclusion in the first component and point-wise ordering in the second one.
Clearly atom renamings do not change the profile profile(P ) = profile(α(P ))
and P ⊆ Q implies profile(P ) ⪯ profile(Q). Consequently, P ≤ Q implies
profile(P ) ⪯ profile(Q). In fact, the converse implication holds as well. Let
profile(P ) ⪯ profile(Q). Note that sets atoms(P,Z) as Z ranges over nonempty
sets of locations of P form a partition of all atoms appearing in P (and the same
for Q). By the ordering on profiles, atoms(Q,Z) contains at least as many ele-
ments as atoms(P,Z). Build a partial bijection mapping atoms in atoms(P,Z)
to atoms in atoms(Q,Z), for every Z. Because of the partitioning property, this
process does not create naming conflicts wherby two atoms would be mapped
to the same atom (by the partitioning on Q) or an atom would be mapped
to two atoms (by the partitioning on P ). Extend this partial bijection to an
automorphism of atoms α and we have αP ⊆ Q, as required.

5. By the previous point, we can just decide the ordering on profiles.

6. We build a finite tree labelled with macrostates. The root is labelled with
the initial macrostate I × {⊥}. If a node is labelled with a macrostate P and
P → Q1, . . . , Qn are all successors of P , then there are n children labelled with
Q1, . . . , Qn. If we find a node labelled with a rejecting macrostate, then we halt
and declare that the automaton is not universal. If on the same branch we find
two nodes labelled with macrostates P ≤ Q, then we do not further explore
the tree from Q. (This is correct: If Q can reach a rejecting macrostate, so
can P .) Finally, if we cannot further extend the tree, then we declare that the
automaton is universal.

The previous algorithm was based on forward reachability. We now present
an alternative backward reachability algorithm. A macrostate is accepting if it
contains some accepting state (p, ) with p ∈ F . The set of accepting macrostates
is upward closed. Let Un be the set of all macrostates necessarily reaching an
accepting macrostate after ≤ n steps. In other words, U0 is the set of accepting
macrostates and if we define the controller predecessor opertor

pre−1(U) := {P ∈ M | P → Q implies Q ∈ U} ,

we can write

Un+1 = Un ∪ pre−1(Un).
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This gives rise to an nondecreasing chain of upward closed sets U0 ⊆ U1 ⊆ · · · .
It stabilises after finitely many steps at some UN = UN+1, we can detect this,
and the automaton is universal if the initial macrostate is in UN .

Exercise 7. A rewrite system over a finite alphabet Σ is a finite set of pairs
u → v with u, v ∈ Σ∗. Consider the least reflexive and transitive congruence →∗

on Σ∗ containing →. A rewrite system is lossy if it contains transitions a → ε
for every a ∈ Σ. Show that the relation →∗ is decidable when → is lossy.

Solution: For a set of configurations X ∈ Σ∗, let pre∗(X) be the set of all
configurations y which can reach some configuration x ∈ X, i.e., y →∗ x. We
want to decide whether for given configurations x, y we have x ∈ pre∗({y}).
Notice that pre∗(X) is upward closed for every X. Indeed, for two configurations
x ⪯∗ y (in the Higman ordering) we have y →∗ x by dropping all additional
letters. Consequently, x →∗ X and x ⪯∗ y implies y →∗ x →∗ X. In particular
pre∗({y}) is upward closed and we can compute a finite basis B for it. If x ∈
pre∗({y}) then just find a path witnessing this. If x ̸∈ pre∗({y}), then verify
x ̸∈ B ↑ by just checking that x does not dominate any element in the basis.

Z-VASSes

This part is unrelated with well quasi orders. We show that reachability in
VASSes is considerably simpler if we relax the requirement that counters cannot
become negative.

Exercise 8. Let a Z-VASS of dimension d ∈ N be a finite set of location-vector
pairs V ⊆fin L×Zd. The semantics is as in VASS, except that now configurations
are in L × Zd (instead of the more restrictive L × Nd). Show that reachability
is decidable for Z-VASSes.

Solution: The case without states (control locations) |L| = 1 easily reduces to
integer linear programming. If |L| ≥ 2, then we need to additionally ensure that
the number of times we enter a control location is the same as the number of
times we exit it, plus or minus one when the location is the initial, resp., final
one.
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