
Languages, automata and computation II

Tutorial 6

Winter semester 2023/2024

In this tutorial we explore ω-regular languages L ⊆ Σ∗. By definition, these
are languages recognised by ω-regular expressions:

e, f ::= ε | a | e+ f | e · f | e∗,
g, h ::= g + h | e · g | eω.

In the construction of eω we require that ε ̸∈ L(e).

Exercise 1. Show that a language L ⊆ Σω is ω-regular iff it is recognised by a
nondeterministic Büchi automaton (NBA).

Solution: For the “only if” direction, assume L = L(g) for some ω-regular
expression g. In fact, one can see that g can be taken of the form g =

∑n
i=1 ei·fω

i ,
without loss of generality. Since NBA-recognisable languages are closed under
union, it suffices to build a NBA for an expression of the form e·fω. This is easily
done starting from NFA’s A,B recognising L(A) = L(e), resp., L(B) = L(f):

From each transition p
a−→ q of A or B with q accepting, add a transition

p
a−→ pBI to the initial state of B.
For the “if” direction, assume L = L(A) is recognised by a NBA. For every

two states p, q of A, consider the language L(p, q) =
{
w ∈ Σ∗ | p w−→ q

}
of all

words labelling a run from p to q. Then L equals

L =
⋃

{L(p, q)(L(q, q) \ {ε})ω | p initial, q accepting} .

The writing above clearly shows that the language on the right is ω-regular.
Both inclusions are easy to prove.

Exercise 2 (1). Are the following languages ω-regular?

1. ω-words with infinitely many prefixes in a fixed regular language of finite
words L ⊆ Σ∗.

2. ω-words with infinitely many infixes of the form abpa with p ∈ N prime.

3. ω-words with infinitely many infixes of the form abna with n ∈ N>0 even.

Solution: 1. Yes, even deterministically. Take a deterministic finite automa-
ton A recognising L. Now with the same syntax we interpret A as a deter-
ministic Büchi automaton. By definition, the latter automaton recognises
the required language.
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Figure 1: A deterministic Büchi automaton.

2. No. By way of contradiction assume there is an NBA A recognising
ω-words with infinitely many infixes of the form abpa with p ∈ N prime.
One such word is w = (bpa)ω where p is a prime chosen to be larger than
the number of states of A. Since w is accepted and p is large, while read-
ing the i-th occurrence of the infix bpa the automaton visits some state
qi twice within the bp part (possibly a different one across different in-
fixes). Let ki be the distance between the two occurrences of qi in the
i-th infix. We now pump this segment by repeating it p times, so that
the i-th infix is now bp+p·ki , certainly not of prime length. The resulting
word bp+p·k1a · bp+p·k2a · · · is still accepted by the automaton, however it
does not have any infix abpa with p ∈ N prime, let alone infinitely many
of them, which is a contradiction.

We have the following generalisation: If an NBA A of k states recognises
an infinite word w = u0u1 · · · ∈ Σω with the length of each infix ui ∈ Σ∗

larger than k, then for every i ∈ N we can write ui = xiyizi with yi
nonempty, xizi of length at most k, and s.t. for every sequence of numbers
n0, n1, · · · ∈ N (including the case ni = 0) the automaton A also accepts
the ω-word

x0y
n0
0 z0 · x1y

n1
1 z1 · · · .

3. Yes, even deterministically. The automaton keeps track of the parity of k
in blocks of the form bka and accepts at the end of such a block with k
even; cf. fig. 1.

Exercise 3 (2). Show that a non-empty ω-regular language contains an ulti-
mately periodic word.

Solution: Let A be an NBA recognising the language. Since the language is not
empty, there exists an infinite accepting run. The run visits the set of accepting
states infinitely often, and since this set is finite, some particular accepting state
q ∈ F is visited infinitely often. In particular, q is visited twice. We now split
the accepting run as αuβvγ where αu is a finite run over some word u ∈ Σ∗

ending in q, βv over some v ∈ Σ∗ starts and ends in q, and γ is the rest of the
run. The run αuβ

ω
v witnesses acceptance of the ultimately periodic word uvω.

The same argument works for acceptance on transitions.

Exercise 4 (Ultimately periodic words vs. runs). An ultimately periodic run
is labelled by an ultimately periodic word. Is it the case that if an NBA accepts
an ultimately periodic word, then it has an accepting ultimately periodic run
over this word?
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Solution: Yes. Let uvω be accepted by the automaton and fix an accepting
run witnessing this. This run can be factored as αβ1β2 · · · where αβ1 · · ·βn is
the run reading prefix uvn. Infinitely many βi’s visit an accepting state, but
not all of them. Refactor the run by combining several βi’s into one in such a
way that they always visit an accepting state. The new refactoring is α′β′

1β
′
2 · · ·

where α′ is labelled by some word in uv∗ and β′
i by v+. The run α′β′

1 · · ·β′
n

ends in some state, call it qn. For n larger than the number of states of the
automaton, there is a repetition of states qi = qj , for some 0 ≤ i < j ≤ n. The
run α′β′

1 · · ·β′
i−1(β

′
i · · ·β′

j−1)
ω is ultimately periodic and accepts uvω.

Exercise 5 (4). Are the following languages ω-regular?

1. ω-words with arbitrarily long infixes from the regular language ab∗a.

2. ω-words with infinitely many prefixes from a fixed language L ⊆ Σ∗ (not
necessarily regular).

Solution: 1. No, the set of infinite words with arbitrarily long infixes from
ab∗a contains no ultimately periodic word.

2. No. Fix any non-ultimately periodic word u ∈ Σω and let L be the set of
its prefixes. Then our language is M = {u}, which cannot be ω-regular
since it is nonempty and does not contain any ω-regular word.

Exercise 6 (5). Show that “there exists a letter b” cannot be accepted by an
NBA where all states are accepting (but some transitions may be missing).

Solution: By way of contradiction, assume such an automaton exists. The
word aω is rejected, therefore the automaton cannot read already some finite
prefix ak. In particular akbω is rejected as well, however it should have been
accepted, which is a contradiction.

Exercise 7 (6). Show that the language “finitely many a’s” cannot be accepted
by a deterministic Büchi automaton.

Solution: By way of contradiction, assume such an automaton exists. Since
the automaton accepts bω, it visits an accepting state after some number n1 of
b’s. Since the automaton accepts bn1abω, it visits an accepting state after some
number n2 of b’s at the end. Continuing this reasoning, in the limit construct
an infinite word bn1abn2a · · · accepted by the automaton, however it contains
infinitely many a’s.

Exercise 8. Are deterministic Büchi languages closed under union? intersec-
tion? complement?

Solution: They are closed under union and intersection, as shown by suitable
product constructions. They are not closed under complement, however a lan-
guage is deterministic Büchi iff its complement if deterministic coBüchi. Recall
that “finitely many a’s” is not deterministic Büchi, however it is deterministic
coBüchi. If they were closed under complement then it would be deterministic
Büchi, a contradiction.
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Exercise 9. Show that nonemptiness is decidable for nondeterministic Büchi
automata. Is the problem in PTIME? Can one do better in terms of computa-
tional complexity?

Solution: The problem is complete for nondeterministic logarithmic space (NL),
thus in PTIME. For the upper bound, we observe that the language is nonempty
iff there is an accepting state p s.t.1) p is reachable from the initial state, and 2) p
is reachable from itself via a path visiting an accepting state. A NL algorithm
can guess such a p and corresponding witnessing paths.

For the lower bound, notice that s, t-reachability in directed graphs (which is
NL-hard) reduces to nonemptiness of Büchi automata where s is the initial state
and t is the unique accepting state, augmented with a self-loop (sink state).

Exercise 10 (7). Show that every language accepted by a nondeterministic
Muller automaton is also accepted by some nondeterministic Büchi automaton.

Solution: Initially, the Büchi automaton simulates the Muller automaton, while
visiting only rejecting states. At some point, it guesses a Muller set F ∈ F and
ensures that from this point on all and only states from F can be visited (thus
F is the infinity set of the run). To do this, it uses a break-point construction
with the help of an auxiliary set G. Initially, G is the empty set ∅. Every time
a state from F is visited, it adds this to an auxiliary set G. Transitions to
states not in F are removed. The first time G = F , the automaton declares the
current state as accepting and resets G to ∅.

Exercise 11 (3). Show that if two ω-regular languages agree over the set of all
ultimately periodic words, then they are equal.

Solution: Assume L,M ⊆ Σω contain the same ultimately periodic words. If
they are not equal, then the language L \ M ∪ M \ L is nonempty. Since the
latter language is ω-regular (determinise Büchi automata into Muller automata,
perform Boolean operations, and then convert back to a nondeterministic Büchi
automaton), it contains an ultimately periodic word, which is a contradiction.

Exercise 12. Is the set of all ultimately periodic words ω-regular?

Solution: No, its complement is nonempty and contains no ω-regular word.

Exercise 13 (8). Show that nonemptiness is decidable for nondeterministic
Muller automata.

Solution: Transform a Muller into a Büchi automaton and solve emptiness for
the latter.

Exercise 14 (9). Consider the following binary operation on infinite words:

d : Σω × Σω → Q
d(u, v) := 2−n,

where n is the length of the longest common prefix of u, v.

• Show that d satisfies the axioms of a metric, and thus (Σω, d) is a metric
space.
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• An open set in this space is a language L ⊆ Σω s.t. for all w ∈ L there is
a radius r > 0 s.t. the open ball of radius r centered at w is also in L:

{u ∈ Σω | d(w, u) < r} ⊆ L.

Find an open language which is not ω-regular and viceversa.

• Show that L is open iff L = K · Σω for some K ⊆ Σ∗.

• If additionally L is ω-regular, then show that K can be chosen to be
regular. Conclude that an open ω-regular language is DBA recognisable.

Solution: The verification of d to be a metric (in fact, even an ultrametric) is
a matter of expanding the definition.

Regarding the second point, any nonregular language K gives rise to an
open non-ω-regular language K · {$} · Σω where $ is not in the alphabet of
K. For instance, this shows that {anbn | n ∈ N} $ {a, b, $}ω is not ω-regular.
Alternatively, one can use a direct pumping argument. The language (recognised
by) aω + bω is ω-regular but not open.

We now address the third point. Assume that L is of the form L = K · Σω.
Then w ∈ L implies that we can write w = u · v for some u = uw ∈ K and
v ∈ Σω. Moreover, Lw := uw · Σω ⊆ L. This shows that the whole ball of
radius |uw| is in L, and thus L is open. Assume now that L is open. In fact L
is covered by languages of the form Lw with w ∈ L:

L =
⋃
w∈L

Lw.

Take K to be {uw ∈ Σ∗}w ∈ L.
Regarding the third point, assume L is recognised by a finite deterministic

automaton A with any acceptance condition (can be Muller, parity, ...). By
the previous point we can write L = K · Σω for some K ⊆ Σ∗ (not necessarily
regular). Let Q be the set of states of A reached by reading some word from
K. Then necessarily every q ∈ Q recognises Σω. From A construct a DFA B
with the same states, initial state, and transitions, where additionally all states
in Q are accepting. Then K ⊆ L(B) and L = L(B) · Σω. In fact, L(B) · Σω is
even DBA-recognisable: Replace all accepting states of B with a single universal
accepting state.

Exercise 15 (10). Reminiscent of the Myhill-Nerode characterisation of regular
languages via congruences of finite index, we would like to characterise ω-regular
languages L via equivalences ∼L s.t., for every language L ⊆ Σω,

L is ω-regular iff ∼L has finite index. (1)

Which of the following candidates yields an equivalence satisfying (1)?

1. The equivalence ∼L on Σ∗ defined as

u ∼L v iff ∀w ∈ Σω : uw ∈ L iff vw ∈ L.

2. The equivalence ∼L on Σω defined as

u ∼L v iff ∀w ∈ Σ∗ : wu ∈ L iff wv ∈ L.
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3. The equivalence ∼L on Σ+ defined as

L: In the book it is on Σ∗, however in that case it is not clear what s(ut)ω

means when ut = ε.

u ∼L v iff

{
∀w ∈ Σω : uw ∈ L iff vw ∈ L, and
∀s, t ∈ Σ∗ : s(ut)ω ∈ L iff s(vt)ω ∈ L.

Solution: First we notice that if L is ω-regular, then all candidate equivalences
have finite index.

1. We show that ∼L is refined by an equivalence ∼A of finite index, and thus
itself of finite index. Let u ∼A v if the NBA A reaches the same set of
states when reading u and v. This clearly refines ∼L and it is of finite
index since there are finitely many subsets of states that can possibly be
reached.

2. As above, we show that ∼L is refined by an equivalence ∼A of finite index.
For an NBA A and an ω-word u, let Qu be the set of states of A from
which an accepting run over u can be started. Let u ∼A v if Qu = Qv.
This is clearly of finite index; it refines ∼L since Qu = Qv and wu ∈ L
implies that from initial state q we can read w and reach a state in Qu,
and thus wv ∈ L as well.

3. As above, given an NBA A we define an equivalence ∼A of finite index on
Σ∗ refining ∼L. Consider the three-valued commutative ring

S = ({−∞, 0, 1} ,max,+)

where the addition is max, the multiplication is +, with −∞ absorbing
for + and 1+ 1 = 1. The characteristic matrix of a finite nonempty word
u ∈ Σ+ is the matrix MA

u ∈ {S}Q×Q
s.t., for states p, q ∈ Q, MA

u (p, q)

is 1 if there is a run p
u−→ q visiting an accepting state, 0 if there is a

run p
u−→ q but not one visiting an accepting state, and ⊥ if there is

no run p
u−→ q. Let u ∼A v if Mu = Mv. This equivalence has finite

index since there are finitely many characteristic matrices. We show that
this equivalence refines ∼L. Assume u ∼A v and s(ut)ω ∈ L. There
is an accepting run αβ0β1 · · · where α reads s, every βi’s reads ut, and
for infinitely many i’s it does so while visiting an accepting state. Since
Mu = Mv we have Mut = MuMt = MvMt = Mvt (the multiplications are
taken in the matrix semiring SQ×Q). We can construct a run αβ′

0β
′
1 · · ·

where β′
i reads vt and visits an accepting state whenever βi does so. It

follows that s(vt)ω ∈ L, as required.

We show that for each candidate there is a nonregular language L s.t. ∼L

has finite index.

1. If L ⊆ Σω is prefix-independent, i.e., uv ∈ L iff v ∈ L for every finite word
u ∈ Σ∗, then all finite words u, v are ∼L-equivalent: uw ∈ L iff w ∈ L iff
vw ∈ L. It thus suffices to find a prefix-independent nonregular language,
for example the one from 2. in Exercise 2 would do.
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2. If L ⊆ Σω is prefix-independent, then there are two equivalence classes
only (and this is the best possible if L is nontrivial): L and its complement
Σω \L. We can conclude with the same example as in the previous point.

3. Take the example from 1. of Exercise 5, “arbitrarily long infixes in ab∗a”.
It is prefix independent, therefore whether uw ∈ L does not depend on
u. Moreover, s(ut)ω ∈ L is always false since L does not contain any
ultimately periodic word. Thus ∼L has only one equivalence class.

L: Check this argument

Exercise 16. A language of ω-words is prefix-independent if

uv ∈ L iff v ∈ L, for all u ∈ Σ∗, v ∈ Σω.

1. Consider the definition of prefix-independence for finite words. Describe
all the prefix-independent languages of finite words.

2. Describe all prefix-independent ω-regular languages.

Solution: TODO.

Exercise 17 (Infinite Ramsey theorem). Show that a infinite finitely coloured
clique contains an infinite monochromatic clique. (The perhaps more familiar
finite Ramsey theorem—any sufficiently large finitely colored clique contains
a monochromatic clique—is implied by the infinite version by a compactness
argument.)

Solution: We address the countable case. Order the vertices of the graph as
an infinite sequence π0 := v0v1 · · · . Construct an infinite sequence of infinite
sequences π0, π1, . . . s.t.

1. sequence πi+1 agrees with πi on the first i vertices, and

2. for all i ∈ N there is a color ci s.t. the i-th vertex of πi has a ci-edge to all
vertices to its right in the sequence πi.

The construction is inductive. We obtain a limit sequence πω thanks to the first
condition, and thanks to the second condition each vertex ui in it has a color
ci s.t. it has ci-edges to all vertices to its right. Some color ci appears infinitely
often, inducing the required monochromatic infinite clique.
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