Languages, automata and computation II Homework 1

Problems: deadline 22/11/2024

Problem 1. Consider a finite alphabet $\Sigma = \{a, b\}$. An ω -word is a sequence $a_0a_1 \cdots$ of letters from Σ . Let Σ^{ω} be the set of all ω -words over Σ .

- 1. For two ω -words $u, v \in \Sigma^{\omega}$ we say that u embeds into v, written $u \sqsubseteq v$, if we can obtain u by deleting finitely or infinitely many letters from v. Show that embedding of ω -words is a well-quasi order.
- 2. Now consider the variant where only finitely many letters from v can be deleted. Is the resulting relation still a well-quasi order?

Problem 2. Consider the structure (\mathbb{N}^d, \leq) , where the order " \leq " is elementwise. Recall that a set $X \subseteq \mathbb{N}^d$ is *downward closed* if for every $x \in X$ and $y \leq x$ we have $y \in X$.

- 1. Show that any downward-closed set $X \subseteq \mathbb{N}^d$ is semilinear.
- 2. Provide an algorithm that solves the following problem: Given a VAS (without states) of dimension d and an initial configuration $x \in \mathbb{N}^d$, construct a semilinear representation for the downward closure of the set of configurations reachable from x.

Problem 3. Consider first-order logic over the structure (\mathbb{Q}, \leq) of the rational numbers together with their natural order. Let $\mathbb{Q}^{d\uparrow}$ be the set of *increasing d*-tuples of rational numbers (x_1, \ldots, x_d) with $x_1 < \cdots < x_d$. Find all first-order definable total orders on $\mathbb{Q}^{3\uparrow}$. (Such an order is a binary relation on triples, and therefore it is described by a first-order formula with six free variables.)

Problem 4. Consider the structures of *arithmetic* $(\mathbb{N}, +, \times)$ and of the *free* monoid $(\{0,1\}^*, \cdot, 0, 1)$. Show that for every sentence of first-order logic φ of the free monoid one can compute a sentence of first-order logic ψ of arithmetic s.t. φ is true in the free monoid if and only if ψ is true in arithmetic.