
Languages, automata and computation II

Tutorial 3 – Applications of well-quasi orders

Winter semester 2024/2025

Regular languages

Exercise 1. Consider the set of finite words well-quasi ordered by the subword
relation (Σ∗,⊑). Show that every downward closed language over Σ is regular.

Lossy rewrite systems

Exercise 2. A rewrite system over a finite alphabet Σ is a finite set of pairs
u → v with u, v ∈ Σ∗. Consider the least reflexive and transitive congruence →∗

on Σ∗ containing →. A rewrite system is lossy if it contains transitions a → ε
for every a ∈ Σ. Show that the relation →∗ is decidable when → is lossy.

Vector addition systems

Exercise 3. Let V be a d-dimensional VASS and consider a target configuration
t ∈ P ×Nd, where P is the set of states. Show that one can compute the set of
all configurations s which can cover t.

Exercise 4. Let V be a d-dimensional VAS and consider a source configuration
s ∈ Nd. Show that one decide whether there are only finitely many configura-
tions reachable from s.

Exercise 5. Let V be a d-dimensional VAS and consider a source configuration
s ∈ Nd. Show that for any coordinate k ∈ {1, . . . , d} it is decidable whether
there exists a number n ∈ N such that every configuration t reachable from s
has the kth coordinate bounded by n.

Exercise 6. Show that a VASS of dimension d can be simulated by a VAS
(without states) of dimension d+ 3.

Vector addition systems over Z
This part is about VASSes but unrelated with well quasi orders. We show that
reachability in VASSes is considerably simpler if we relax the requirement that
counters cannot become negative.

1



Exercise 7. Let a Z-VASS of dimension d ∈ N be a pair (Q,T ) where Q is
a finite set of states and T ⊆ Q × Zd × Q be a finite set of transitions. The
semantics is as in VASS, except that now configurations are in Q×Zd (instead of
the more restrictive Q×Nd). Show that reachability is decidable for Z-VASSes.

Strassen’s matrix multiplication algorithm

This section is unrelated with well-quasi orders. We begin with a simpler prob-
lem.

Problem 1. Consider three complex numbers a = a1 + a2i, b = b1 + b2i, c =
c1 + c2i ∈ C. The naive multiplication algorithm would compute the product
c = a · b as

c1 = a1 · b1 − a2 · b2,
c2 = a1 · b2 + a2 · b1,

which uses four multiplications in R. Find a more efficient algorithm that uses
only three multiplications and any number of additions.

Consider 2× 2 matrices of rational numbers

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

(
c11 c12
c21 c22

)
∈ Q2×2.

The naive multiplication algorithm would compute the product C = A ·B as

c11 = a11 · b11 + a12 · b21,
c12 = a11 · b12 + a12 · b22,
c21 = a21 · b11 + a22 · b21,
c22 = a21 · b12 + a22 · b22,

which uses 8 multiplications (we do not care about additions). When applied re-
cursively, this yields the following formula for the number of ring multiplications
used in order to compute the product of two n× n matrices A,B

M(n) ≤ O(n2) + 8 ·M(n/2).

From this we obtain a complexity upper bound M(n) ≤ O(n3) for naive matrix
multiplication. Strassen’s algorithm uses only 7 multiplications by computing
the following products:

m1 = (a11 + a22) · (b11 + b22),

m2 = (a21 + a22) · b11,
m3 = a11 · (b12 − b22),

m4 = a22 · (b21 − b11),

m5 = (a11 + a12) · b22,
m6 = (a21 − a11) · (b11 + b12),

m7 = (a12 − a22) · (b21 + b22).

The number of ring multiplications for the improved algorithm satisfies

M(n) ≤ O(n2) + 7 ·M(n/2).

and thus M(n) ≤ O(nlog2 7), where log2 7 ≈ 2.81.

2


