Basic common definitions
Contents
module Preliminaries.Base where open import Agda.Primitive using (Level; lzero) renaming (_⊔_ to _⊔ℓ_) public open import Agda.Builtin.Sigma using (fst; snd) public open import Agda.Builtin.Bool using (Bool; true; false) public open import Relation.Nullary using (Dec; yes; no) public open import Relation.Unary using () renaming (WeaklyDecidable to WeaklyDecidable₁) public open import Relation.Binary.Core public open import Relation.Binary.Structures public open import Relation.Binary.Definitions using (WeaklyDecidable) public open import Function.Base using (id; _∘_; _$_) public open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂; sym; trans) renaming (isEquivalence to ≡-isEq) public module ≡-Eq where open Relation.Binary.PropositionalEquality.≡-Reasoning public open import Data.Bool.Base using (T) public -- (Bool; true; false; T; ⊥; _∧_; _∨_; not) public open import Data.Empty public open import Data.Maybe.Base using (Maybe; just; nothing) public open import Data.Product using (∃; _×_) public open import Data.Product.Base using (∃-syntax) renaming (_,_ to _,,_) public infix 4 _iff_ _iff_ : (A B : Set) → Set A iff B = (A → B) × (B → A) open import Data.Sum using (_⊎_; inj₁; inj₂) renaming ([_,_] to case-⊎) public open import Data.Nat using (ℕ; zero; suc; _≤_; _<_; z≤n; s≤s; s<s; s≤s⁻¹; _≤?_; _⊔_) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) public open import Data.Fin.Base using (Fin; zero; suc; fromℕ; fromℕ<; fromℕ<″; _↑ˡ_; _↑ʳ_; inject≤) public open import Data.Vec using (Vec; []; _∷_; _++_; lookup; map; truncate; tabulate; fromList; concat) public open import Data.Vec.Relation.Unary.Any as Any using (Any; here; there) public open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) renaming (lookup to All-lookup; map to All-map) public open import Data.Vec.Membership.Propositional.Properties using (∈-++⁺ˡ; ∈-++⁺ʳ; ∈-tabulate⁺; ∈-lookup) public open import Data.Vec.Membership.Propositional public open import Algebra renaming (CommutativeRing to CR) CommutativeRing = CR lzero lzero infixl 5 _⟨_⟩_ _⟨_⟩_ : -- {A : Set} {B : A → Set} {C : (a : A) → B a → Set} → -- (a : A) → ((a : A) → (b : B a) → C a b) → (b : B a) → C a b -- ∀ {ℓ} {A B : Set} {C : Set ℓ} → ∀ {ℓ} {A B C : Set ℓ} → A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y
References
Last-modified: Jan 23 14:13:56 2026