Auxiliary algebraic structures
Contents
open import Relation.Binary.Core using (Rel) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Structures using (IsEquivalence) module Preliminaries.Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Algebra.Core using (Op₁; Op₂) open import Algebra.Definitions _≈_ import Algebra.Consequences.Setoid as Consequences open import Data.Product.Base using (_,_; proj₁; proj₂) open import Level using (_⊔_) open import Algebra.Structures (_≈_) record IsCommutativeRingWithoutOne (+ * : Op₂ A) (- : Op₁ A) (0# : A) : Set (a ⊔ ℓ) where field isRingWithoutOne : IsRingWithoutOne + * - 0# *-comm : Commutative * open IsRingWithoutOne isRingWithoutOne public open IsCommutativeRingWithoutOne public -- isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# -- isCommutativeSemiring = record -- { isSemiring = isSemiring -- ; *-comm = *-comm -- }
References
Last-modified: Jan 23 14:13:56 2026