Special product rules
Contents
{-# OPTIONS --guardedness --sized-types #-} open import Preliminaries.Base module Special.ProductRules (R : CommutativeRing) where open import Preliminaries.Algebra R open import General.Terms R open import General.ProductRules R open import Special.Polynomials R open AlgebraicProperties
These are the axioms satisfied by special product rules.
record Special (P : ProductRule) : Set where field P-add : [ P ]⟨ x + y , x′ + y′ , z , z′ ⟩ ≈₆ [ P ]⟨ x , x′ , z , z′ ⟩ + [ P ]⟨ y , y′ , z , z′ ⟩ P-assoc : [ P ]⟨ x * y , [ P ]⟨ x , x′ , y , y′ ⟩ , z , z′ ⟩ ≈₆ [ P ]⟨ x , x′ , y * z , [ P ]⟨ y , y′ , z , z′ ⟩ ⟩ P-comm : [ P ]⟨ x , x′ , y , y′ ⟩ ≈₄ [ P ]⟨ y , y′ , x , x′ ⟩ P-compat : ∀ c → [ P ]⟨ c · x , c · x′ , y , y′ ⟩ ≈₄ c · [ P ]⟨ x , x′ , y , y′ ⟩ open Special public
References
Last-modified: Jan 23 14:13:56 2026