Problems in logic for computer science students

Lorenzo Clemente Jerzy Tyszkiewicz

February 2020
(247 problems, 246 solutions)

Contents

I Problems 1
1 Propositional logic 2
1.1 Logical consequence 4
1.2 Normal forms 6
1.3 Satisfiability 8
1.4 Complexity 9
1.5 Compactness 10
1.6 Resolution 12
1.7 Interpolation 13
2 First-order predicate logic 15
2.1 Definability 18
2.2 Normal forms 21
2.3 Satisfaction relation 22
2.4 Skolemisation 24
2.5 Herbrand models 25
2.6 Logical consequence 26
2.7 Axiomatisability 28
2.8 Spectrum 29
2.9 Compactness 34
2.10 Skolem-Löwenheim theorems 39
2.11 Relating models 42
2.12 Ehrenfeucht-Fraïssé games 46
2.13 Interpolation 52
2.14 Relational algebra 55
3 Second-order predicate logic 57
3.1 Expressiveness 58
3.2 Failures 62
3.3 Word models 63
3.4 Miscellaneous problems 66
4 The decision problem 67
4.1 Finite model property 68
4.2 Quantifier elimination 69
4.3 Interpretations 72
4.4 Model-checking on finite structures 73
5 Arithmetic 74
5.1 Numbers 75
5.2 Automata and formal languages 77
5.3 Miscellanea 78
II Solutions 79

List of Problems

1 Propositional logic 2
1.1 Logical consequence 4
Problem 1.1.1 4
Problem 1.1.2 (Transitivity of " \vDash ") 4
Problem 1.1.3 4
Problem 1.1.4 4
Problem 1.1.5 4
Problem 1.1.6 4
Problem 1.1.7 4
Problem 1.1.8 5
Problem 1.1.9 5
1.2 Normal forms 6
Problem 1.2.2 (Normal forms) 6
Problem 1.2.3 6
Problem 1.2.4 (Equisatisfiable 3CNF) 7
1.3 Satisfiability 8
Problem 1.3.1 8
Problem 1.3.2 8
Problem 1.3.3 8
Problem 1.3.4 8
Problem 1.3.5 (Self-reducibility of SAT) 8
1.4 Complexity 9
Problem 1.4.1 9
Problem 1.4.2 9
Problem 1.4.3 9
Problem 1.4.4 9
Problem 1.4.5 9
1.5 Compactness 10
Problem 1.5.1 (Compactness theorem for propositional logic) 10
Problem 1.5.2 (Compactness implies König's lemma) 10
Problem 1.5.3 (De Bruijn-Erdôs theorem) 10
Problem 1.5.4 10
Problem 1.5.5 10
Problem 1.5.6 10
Problem 1.5.8 (The name of the game) 11
1.6 Resolution 12
Problem 1.6.1 (Resolution is sound) 12
Problem 1.6.2 (Resolution is refutation complete) 12
1.7 Interpolation 13
Problem 1.7.2 (Propositional interpolation) 13
Problem 1.7.3 (Beth's definability theorem) 13
Problem 1.7.4 13
2 First-order predicate logic 15
2.1 Definability 18
2.1.1 Real numbers 18
Problem 2.1.2 18
Problem 2.1.3 (Periodicity) 18
Problem 2.1.4 (Continuity and uniform continuity) 18
Problem 2.1.5 (Differentiability) 18
2.1.2 Cardinality constraints 18
Problem 2.1.6 (Cardinality constraints I) 18
Problem 2.1.7 (Cardinality constraints II) 19
2.1.3 Characteristic sentences 19
Problem 2.1.8 (Characteristic sentences) 19
2.1.4 Miscellanea 19
Problem 2.1.9 (Binary trees) 19
Problem 2.1.10 (Conway's "Game of Life") 19
2.2 Normal forms 21
Problem 2.2.1 (Negation normal form) 21
Problem 2.2.2 (Prenex normal form) 21
Problem 2.2.3 21
Problem 2.2.4 21
2.3 Satisfaction relation 22
Problem 2.3.1 22
Problem 2.3.2 22
Problem 2.3.3 22
Problem 2.3.4 22
Problem 2.3.5 22
Problem 2.3.6 22
Problem 2.3.7 22
Problem 2.3.8 23
Problem 2.3.9 23
Problem 2.3.10 23
Problem 2.3.11 (Constructibility) 23
2.4 Skolemisation 24
Problem 2.4.1 24
Problem 2.4.2 (Skolemisation) 24
Problem 2.4.3 (Herbrandisation) 24
2.5 Herbrand models 25
Problem 2.5.2 (Herbrand's theorem) 25
Problem 2.5.3 25
2.6 Logical consequence 26
Problem 2.6.1 26
Problem 2.6.2 26
2.6.1 Independence 26
Problem 2.6.4 26
Problem 2.6.5 26
Problem 2.6.6 27
Problem 2.6.7 27
Problem 2.6.8 27
2.7 Axiomatisability 28
Problem 2.7.2 (Classes of finite structures are axiomatisable) 28
Problem 2.7.3 (Universal axiomatisations) 28
2.8 Spectrum 29
2.8.1 Examples 29
Problem 2.8.2 (Finite and cofinite sets are spectra) 29
Problem 2.8.3 (Even numbers) 29
Problem 2.8.4 29
Problem 2.8.5 29
Problem 2.8.6 29
Problem 2.8.7 29
Problem 2.8.8 30
Problem 2.8.9 30
2.8.2 Closure properties 30
Problem 2.8.10 (Spectra are closed under union) 30
Problem 2.8.11 (Spectra are closed under intersection) 30
Problem 2.8.12 (Spectra are closed under addition) 30
Problem 2.8.13 (Spectra are closed under multiplication) 30
Problem 2.8.15 (Semilinear sets are spectra) 31
Problem 2.8.16 (Spectra and Kleene iteration) 31
Problem 2.8.17 (Doubling) 31
2.8.3 Restricted formulas 31
Problem 2.8.18 (Spectra with only unary relations) 31
Problem 2.8.19 (Spectra with a unary function) 31
Problem 2.8.20 31
Problem 2.8.21 (Spectra of existential sentences) 31
Problem 2.8.22 (Spectra of universal sentences) 32
Problem 2.8.23 (Spectra of $\exists \forall$-sentences) 32
2.8.4 Counting models 32
Problem 2.8.25 32
Problem 2.8.26 32
Problem 2.8.27 32
Problem 2.8.28 32
2.8.5 Characterisation 32
Problem 2.8.29 (Spectra are in NEXPTIME) 32
2.9 Compactness 34
Problem 2.9.1 (Compactess theorem) 34
Problem 2.9.2 (Compactness theorem (w.r.t. satisfiability)) 34
Problem 2.9.3 (Compactness in finite structures?) 34
Problem 2.9.4 34
Problem 2.9.5 (Definable separability of axiomatisable classes) 34
2.9.1 Nonaxiomatisability 34
Problem 2.9.6 (Finiteness is not axiomatisable) 34
Problem 2.9.7 (Finite diameter is not axiomatisable) 34
Problem 2.9.8 (Finite colourability is not axiomatisable) 34
Problem 2.9.9 (Finitely many equivalence classes is not axiomatisable) 35
Problem 2.9.10 (Finite equivalence classes is not axiomatisable) 35
Problem 2.9.11 (Finitely generated monoids are not axioma- tisable) 35
Problem 2.9.12 (Cycles are not axiomatisable) 35
Problem 2.9.13 (Unions of cycles are not axiomatisable) 36
Problem 2.9.14 (The Church-Rosser property is not axioma- tisable (via compactness)) 36
Problem 2.9.15 (Strong normalisation is not axiomatisable (via compactness)) 36
Problem 2.9.16 (Well-orders are not axiomatisable) 36
Problem 2.9.17 36
Problem 2.9.18 36
Problem 2.9.19 36
Problem 2.9.20 37
Problem 2.9.21 (Periodicity is not axiomatisable) 37
Problem 2.9.22 37
2.10 Skolem-Löwenheim theorems 39
2.10.1 Going upwards 39
Problem 2.10.2 (Hessenberg theorem) 39
Problem 2.10.3 39
Problem 2.10.4 (Infinite axiomatisability?) 39
Problem 2.10.5 (Nowhere dense orders) 39
2.10.2 Going downwards 39
Problem 2.10.7 40
Problem 2.10.8 40
Problem 2.10.9 40
Problem 2.10.10 (Function semigroups) 40
Problem 2.10.11 40
Problem 2.10.12 40
2.11 Relating models 42
2.11.1 Logical relations 42
Problem 2.11.2 42
Problem 2.11.3 (Fundamental property) 42
Problem 2.11.4 (Preservation for $\exists^{*} \forall^{*}$-sentences) 43
2.11.2 Isomorphisms 43
Problem 2.11.6 (Isomorphism theorem) 44
Problem 2.11.7 44
Problem 2.11.8 44
Problem 2.11.9 44
2.11.3 Elementary equivalence 45
Problem 2.11.11 45
Problem 2.11.12 45
2.12 Ehrenfeucht-Fraïssé games 46
2.12.1 Equivalent structures 46
Problem 2.12.3 46
Problem 2.12.4 46
Problem 2.12.5 46
Problem 2.12.6 46
Problem 2.12.7 47
Problem 2.12.8 47
Problem 2.12.9 47
2.12.2 Distinguishing sentences 47
Problem 2.12.10 (Distinguishing chains) 47
Problem 2.12.11 (The hypercube) 47
2.12.3 Infinite EF-games 47
Problem 2.12.12 (Countable EF-games) 48
Problem 2.12.13 48
2.12.4 No equality 48
Problem 2.12.14 48
Problem 2.12.18 48
2.12.5 One-sided EF-games 49
Problem 2.12.20 49
Problem 2.12.21 49
2.12.6 Inexpressibility 49
Problem 2.12.22 (Eulerian cycles are not definable) 49
Problem 2.12.23 (Planarity is not definable (via EF-games)) 49
Problem 2.12.24 (Hanf) 49
2.12.7 Complexity 50
Problem 2.12.25 (Solving EF-games in PSPACE) 50
Problem 2.12.26 (Fixed-length EF-games) 50
Problem 2.12.29 (Łoś-Vaught test) 51
Problem 2.12.30 (Theory completeness and decidability) 51
Problem 2.12.31 51
2.13 Interpolation 52
2.13.1 No equality 52
Problem 2.13.2 (Interpolation for quantifier-free ground formulas) 52
Problem 2.13.3 (Preinterpolation for \forall / \exists sentences) 52
Problem 2.13.4 (Interpolation for \forall / \exists sentences) 52
Problem 2.13.5 (Interpolation for sentences) 52
Problem 2.13.6 (Interpolation for formulas without equality) 53
2.13.2 Extensions 53
Problem 2.13.7 (Interpolation with equality) 53
Problem 2.13.8 53
Problem 2.13.9 (No interpolation for finite structures) 53
Problem 2.13.10 (Separability of universal formulas) 53
Problem 2.13.12 (Lyndon's theorem) 54
Problem 2.13.13 (Łoś-Tarski's theorem) 54
Problem 2.13.14 (Robinson's joint consistency theorem) 54
2.14 Relational algebra 55
Problem 2.14.1 56
Problem 2.14.2 56
Problem 2.14.3 56
3 Second-order predicate logic 57
3.1 Expressiveness 58
Problem 3.1.1 (Finiteness) 58
Problem 3.1.2 (Countability) 58
Problem 3.1.3 (Spectrum) 58
Problem 3.1.4 58
3.1.1 Directed graphs 58
Problem 3.1.5 (Reachability for directed graphs) 58
Problem 3.1.6 (Connectivity for directed graphs) 58
Problem 3.1.7 (Eulerian cycles in $\exists \mathrm{SO}$) 58
Problem 3.1.8 (Hamiltonian cycles in $\exists \mathrm{SO}$) 58
Problem 3.1.9 59
Problem 3.1.10 (The Church-Rosser property is MSO definable) 59
Problem 3.1.11 (Strong normalisation is MSO definable) 59
3.1.2 Simple graphs 59
Problem 3.1.13 (Connectivity for simple graphs) 59
Problem 3.1.14 (Graph minors in MSO) 60
Problem 3.1.15 (Planarity of finite simple graphs in MSO) 60
3.1.3 MSO on trees 60
Problem 3.1.16 60
3.1.4 MSO on free monoids 60
Problem 3.1.17 60
Problem 3.1.18 61
Problem 3.1.19 61
3.2 Failures 62
Problem 3.2.1 (Compactness fails for $\forall \mathrm{SO}$) 62
Problem 3.2.2 (Skolem-Löwenheim and SO) 62
3.3 Word models 63
Problem 3.3.3 63
Problem 3.3.4 63
Problem 3.3.5 (Star-free regular languages in first-order logic) 64
Problem 3.3.6 64
Problem 3.3.8 64
Problem 3.3.9 (c.f. [20, 27]) 65
Problem 3.3.10 65
Problem 3.3.11 65
Problem 3.3.12 65
3.4 Miscellaneous problems 66
Problem 3.4.1 (Elementary separability of projective classes) 66
Problem 3.4.2 66
4 The decision problem 67
4.1 Finite model property 68
Problem 4.1.2 (Finite model property) 68
Problem 4.1.3 (Small model property for the $\exists^{*} \forall^{*}$-fragment) 68
Problem 4.1.4 (Small model property for monadic logic) 68
4.2 Quantifier elimination 69
Problem 4.2.2 69
Problem 4.2.3 (Quantifier elimination and completeness) 69
4.2.1 Equality 69
Problem 4.2.4 (Löwenheim (1915)) 69
Problem 4.2.5 69
4.2.2 One unary function 70
Problem 4.2.6 (2-cycles) 70
4.2.3 Dense total order 70
Problem 4.2.7 (Quantifier elimination for dense total order) 70
4.2.4 Discrete total order 70
Problem 4.2.8 70
Problem 4.2.9 71
4.2.5 Rational linear arithmetic 71
Problem 4.2.10 (Fourier-Motzkin elimination) 71
4.2.6 Integral linear arithmetic 71
Problem 4.2.11 (Presburger's logic) 71
4.3 Interpretations 72
4.3.1 Real numbers 72
Problem 4.3.1 72
Problem 4.3.3 (First-order theory of the complex numbers) 72
Problem 4.3.4 (First-order theory of planar Euclidean ge- ometry) 72
4.4 Model-checking on finite structures 73
Problem 4.4.1 (First-order logic model-checking) 73
Problem 4.4.2 (SO model-checking) 73
5 Arithmetic 74
5.1 Numbers 75
Problem 5.1.2 (Simplified function χ) 75
Problem 5.1.3 75
Problem 5.1.4 75
Problem 5.1.5 (Collatz problem) 76
Problem 5.1.6 76
Problem 5.1.7 (Counting solutions) 76
5.2 Automata and formal languages 77
Problem 5.2.1 77
Problem 5.2.2 77
Problem 5.2.3 77
Problem 5.2.4 77
Problem 5.2.5 (Modular arithmetic) 77
Problem 5.2.6 (Trakhtrenbrot's theorem) 77
Problem 5.2.7 77
5.3 Miscellanea 78
Problem 5.3.1 78
Problem 5.3.2 (Second-order quantifier elimination) 78

Part I

Problems

Chapter 1

Propositional logic

Preliminaries

The formulas φ of propositional logic are described by the following abstract syntax:

$$
\varphi, \psi:: \equiv p|\perp| \top|\neg \varphi| \varphi \rightarrow \psi|\varphi \vee \psi| \varphi \wedge \psi \mid \varphi \leftrightarrow \psi
$$

where p belongs to a countably infinite set of propositional variables Z. We consider $\varphi \rightarrow \psi$ as an abbreviation for $\neg \varphi \vee \psi$ and $\varphi \leftrightarrow \psi$ as an abbreviation for $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$. When writing formulas, we reduce the use of parentheses by assuming the following order of binding strength (priority) of the connectives, from highest to lowest: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$. For example, $\neg p \wedge q \vee r \leftrightarrow p \vee q$ is parsed as $(((\neg p) \wedge q) \vee r) \leftrightarrow(p \vee q)$.

The notation $\bigvee_{i \in I} \varphi_{i}$ denotes the disjunction of all formulas in $\left\{\varphi_{i} \mid i \epsilon\right.$ $I\}$, and similarly for $\bigwedge_{i \in I} \varphi_{i}$.

$F_{\wedge}(x, y)$		
$x \backslash y$	0	1
0	0	0
1	0	1

$F_{\vee}(x, y)$		
$x \backslash y$	0	1
0	0	1
1	1	1

F_{\neg}	
x	
0	1
1	0

Figure 1.1: Semantic functions for classical logic

Definition (Semantics of propositional formulas). A propositional valuation (or truth assignment) is a function

$$
\varrho: Z \rightarrow\{0,1\} .
$$

A valuation ϱ extends to a semantic function of propositional formulas $\llbracket \varphi \rrbracket_{\varrho} \in\{0,1\}$ (also written $\varrho(\varphi)$) by structural induction as

- $\llbracket p \rrbracket_{\varrho}=\varrho(p)$, if p is a propositional variable;
- $\llbracket \varphi \vee \psi \rrbracket_{\varrho}=F_{\vee}\left(\llbracket \varphi \rrbracket_{\varrho}, \llbracket \psi \rrbracket_{\varrho}\right)$;
- $\llbracket \varphi \wedge \psi \rrbracket_{\varrho}=F_{\wedge}\left(\llbracket \varphi \rrbracket_{\varrho}, \llbracket \psi \rrbracket_{\varrho}\right)$;
- $\llbracket \neg \varphi \rrbracket_{\varrho}=F_{\neg}\left(\llbracket \varphi \rrbracket_{\varrho}\right)$.

The semantic functions $F_{\vee}, F_{\wedge}:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$ and $F_{\neg}:\{0,1\} \rightarrow$ $\{0,1\}$ are defined by the truth table in Figure 1.1.

A formula φ is satisfied by ϱ, written $\varrho \vDash \varphi$, if $\llbracket \varphi \rrbracket_{\varrho}=1$, and it is satisfied if $\varrho \vDash \varphi$ holds for at least one valuation ϱ. We write $\llbracket \varphi \rrbracket$ for the set of valuations $\{\varrho \mid \varrho \vDash \varphi\}$ satisfying φ. If Γ is a (possibly infinite) set of propositional formulas, and $\varrho \vDash \varphi$ for all $\varphi \in \Gamma$, then we write $\varrho \vDash \Gamma$. We say that φ is a logical consequence of Γ, written $\Gamma \vDash \varphi$, if every valuation which satisfies all formulas from Γ satisfies φ as well. If $\Gamma=\{\psi\}$ consists of a single formula, then we just write $\psi \vDash \varphi$. If $\Gamma=\varnothing$ is empty, then we just write $\varnothing \vDash \varphi$ and we say that φ is a tautology.

1.1 Logical consequence

Problem 1.1.1. Consider the following statements about formulas of classical propositional logic. For each of them, establish whether it holds or not, giving a proof in the positive cases and a counterexample in the negative ones.

1. If φ and $\varphi \leftrightarrow \psi$ are tautologies, then so is ψ.
2. If φ and $\varphi \leftrightarrow \psi$ are satisfiable, then so is ψ.
3. If φ is satisfiable and $\varphi \leftrightarrow \psi$ is a tautology, then ψ is satisfiable.
4. If φ is a tautology and $\varphi \leftrightarrow \psi$ is satisfiable, then ψ is a tautology.
5. If φ is a tautology and $\varphi \leftrightarrow \psi$ is satisfiable, then ψ is satisfiable. [solution]

Problem 1.1.2 (Transitivity of " \vDash "). Show that the logical consequence relation is transitive, in the sense that:

$$
\Gamma \vDash \Delta \text { and } \Delta \vDash \Xi \quad \text { implies } \quad \Gamma \vDash \Xi . \quad \text { [solution] }
$$

Problem 1.1.3. Prove that for classical propositional logic,

$$
\Gamma \cup\{\varphi\} \vDash \psi \quad \text { if, and only if, } \quad \Gamma \vDash \varphi \rightarrow \psi . \quad \text { [solution] }
$$

Problem 1.1.4. Prove that $\vDash \varphi$ and $\vDash \varphi \rightarrow \psi$ imply $\vDash \psi . \quad$ [solution]
Problem 1.1.5. Let S be a function mapping propositional variables to propositional formulas. Show that if $\Gamma \vDash \varphi$ holds, then $S(\Gamma) \vDash S(\varphi)$ holds, too. In particular, if φ is a tautology, then so is $S(\varphi)$.
[solution]
Problem 1.1.6. A logic is called monotone, if $\Delta \vDash \varphi$ and $\Gamma \supseteq \Delta$ imply $\Gamma \vDash \varphi$. Prove that classical propositional logic is monotone. [solution]
Problem 1.1.7. Consider formulas built only from conjunction \wedge and disjunction \vee. For such a formula φ, its dualisation $\hat{\varphi}$ is the formula obtained by replacing every occurrence of \vee by \wedge, and vice-versa.

1. Prove that φ is a classical tautology if, and only if, $\neg \hat{\varphi}$ is a classical tautology.
2. Prove that $\varphi \leftrightarrow \psi$ is a tautology if, and only if, $\hat{\varphi} \leftrightarrow \hat{\psi}$ is a tautology.
3. Propose a method to dualise formulas additionally containing the logical constants \perp and T, such that the above equivalences remain valid.
[solution]
Problem 1.1.8. Let φ, ψ be two formulas without common propositional variables. Assume that $\not \vDash \neg \varphi$ and $\not \vDash \psi$. Is it possible that $\vDash \varphi \rightarrow \psi$? [solution]

Problem 1.1.9. Let $G=(V, E)$ be a finite directed graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and consider the set of propositional formulas over variables $\left\{p_{1}, \ldots, p_{n}\right\}$

$$
\Delta=\left\{p_{i} \rightarrow p_{j} \mid\left(v_{i}, v_{j}\right) \in E\right\} .
$$

1. Let $\Gamma_{i j}=\Delta \cup\left\{\neg\left(p_{i} \rightarrow p_{j}\right)\right\}$. Which property of G does satisfiability of $\Gamma_{i j}$ expresses?
2. Provide a propositional formula φ_{n}, depending only on n, s.t. $\Delta \vDash \varphi_{n}$ if, and only if, G is strongly connected.
[solution]

1.2 Normal forms

Definition 1.2.1 (Normal forms). A positive literal is a propositional variable $p \in Z$, a negative literal is the negation of a propositional variable $\neg p$, and a literal ℓ is either a positive p or a negative literal $\neg p$. A formula φ is in conjunctive normal form (CNF) if it is a finite conjunction of disjunctions of literals, i.e., of the form

$$
\varphi \equiv\left(\ell_{1}^{1} \vee \cdots \vee \ell_{1}^{k_{1}}\right) \wedge \cdots \wedge\left(\ell_{r}^{1} \vee \cdots \vee \ell_{r}^{k_{r}}\right)
$$

and in disjunctive normal form (DNF) if it is a finite disjunction of conjunctions of literals, i.e., of the form

$$
\varphi \equiv\left(\ell_{1}^{1} \wedge \cdots \wedge \ell_{1}^{k_{1}}\right) \vee \cdots \vee\left(\ell_{r}^{1} \wedge \cdots \wedge \ell_{r}^{k_{r}}\right)
$$

A formula φ is in negation normal form (NNF) if negation is applied only in front of propositional variables.

Problem 1.2.2 (Normal forms). Prove that for each propositional formula φ, there exists a propositional formula ψ in each of the following normal forms, s.t. ψ is logically equivalent to φ, i.e., $\varphi \leftrightarrow \psi$ is a tautology:

1. Negation normal form (NNF).
2. Disjunctive normal form (DNF).
3. Conjunctive normal form (CNF). Hint: Apply point 2.

In each case, how large is ψ in terms of the size of φ ?
Problem 1.2.3. A formula φ using propositional variables from the set $\left\{p_{1}, \ldots, p_{k}\right\}$ defines the function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ if, for any valuation ϱ,

$$
\llbracket \varphi \rrbracket_{\varrho}=f\left(\varrho\left(p_{1}\right), \ldots, \varrho\left(p_{k}\right)\right)
$$

We say that a set of logical connectives is functionally complete if any function f as above can be defined by a formula using only the connectives from the set. Show that:

1. $\{\wedge, \vee, \neg\}$ is functionally complete.
2. $\{\wedge, \neg\}$ and $\{\vee, \neg\}$ are functionally complete.
3. $\{\rightarrow, \perp\}$ is functionally complete.
4. $\{\wedge, \vee, \rightarrow\}$ is not functionally complete. Hint: Show that only monotonic functions can be represented (w.r.t. the natural order $0 \leq 1$).
5. $\{\uparrow\}$ is functionally complete, where " \uparrow " is the so-called Sheffer stroke (a.k.a. nand function), which is defined as

$$
\varphi \uparrow \psi \equiv \neg \varphi \wedge \neg \psi . \quad \text { [solution] }
$$

Problem 1.2.4 (Equisatisfiable 3CNF). Show that for each propositional formula φ there exists a propositional formula ψ in 3CNF such that 1) ψ is satisfiable if, and only if, φ is satisfiable, and 2) ψ has size linear in the size of φ. Hint: Introduce new propositional variables.
[solution]
Note. Problem 1.4.3 demonstrates that it is impossible to construct equivalent 3-CNF formulas (or even CNF formulas of polynomial length) for every propositional formula.
The following problem has been proposed by Bartek Klin and Szymon Toruńczyk.
(*) Problem 1.2.5. Fix a $k \in \mathbb{N}$. Does there exists an infinite sequence of formulas $\varphi_{0}, \varphi_{1}, \ldots$ in k-CNF giving rise to an infinite strictly increasing chain of valuations

$$
\llbracket \varphi_{0} \rrbracket \mp \llbracket \varphi_{1} \rrbracket \mp \cdots ?
$$

What about k-DNF formulas? And CNF formulas?
[solution]

1.3 Satisfiability

In this section we assume familiarity with standard computational complexity classes such as

$$
\text { LOGSPACE } \subseteq \text { NLOGSPACE } \subseteq \text { PTIME } \subseteq \text { NPTIME, }
$$

and their complements (c.f. [22, 2, 26] for background).
Problem 1.3.1. Show that the satisfiability problem for DNF formulas is in NLOGSPACE. [solution]

Problem 1.3.2. Show that the satisfiability problem for 2-CNF formulas is in NLOGSPACE.

Problem 1.3.3. A formula is in XOR-CNF if it is a conjunction of xor clauses of the form

$$
\ell_{1} \oplus \cdots \oplus \ell_{n},
$$

where $p \oplus q$ is defined as $p \wedge \neg q \vee \neg p \wedge q$. Show that the satisfiability problem xor-formulas in CNF is in PTIME.

Problem 1.3.4. A Horn clause is an implication of the form either

$$
p_{1} \wedge \cdots \wedge p_{n} \rightarrow q, \quad(n \geq 0)
$$

or

$$
p_{1} \wedge \cdots \wedge p_{n} \rightarrow \perp, \quad(n \geq 0)
$$

and a Horn formula is a conjunction of Horn clauses. Show that the satisfiability problem for Horn formulas is in PTIME.
[solution]
Problem 1.3.5 (Self-reducibility of SAT). Assume an oracle that solves the SAT problem and let φ be a satisfiable formula. Show how to construct a satisfying assignment for φ using polynomially many invocations of the oracle.
[solution]

1.4 Complexity

Problem 1.4.1. Construct a sequence of formulas $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ s.t. φ is of size $O(n)$ and admits n^{2} different satisfying valuations. [solution]
Problem 1.4.2. Prove that there are Boolean functions of n variables p_{1}, \ldots, p_{n} s.t. any propositional formula defining them has size $\Omega\left(2^{n} / \log n\right)$. [solution]
Problem 1.4.3. 1. Prove that there is no $k \in \mathbb{N}$ s.t. every formula of classical propositional logic is equivalent to a k-CNF formula.
2. Prove that there is no polynomial $p(n)$ s.t. every formula of classical propositional logic with n variables is equivalent to a CNF formula with $O(p(n))$ clauses.
[solution]
Problem 1.4.4. 1. Consider formulas of n variables, where we allow all possible ($n-1$)-ary Boolean functions $\{0,1\}^{n-1} \rightarrow\{0,1\}$ as connectives. Prove that there is a formula which is not logically equivalent to one in which every propositional variable is used only once.
2. Consider formulas of n variables over all possible unary $\{0,1\} \rightarrow\{0,1\}$ and binary $\{0,1\}^{2} \rightarrow\{0,1\}$ Boolean functions as connectives. Prove that there is no polynomial $p(n)$ s.t. every classical propositional formula of n variables is equivalent to one in which every variable is used at most $p(n)$ times.
[solution]
Problem 1.4.5. Consider a simple graph $G=(V, E)$ with vertices in $V=\left\{v_{1}, \ldots, v_{n}\right\}$, i.e., an undirected graph without loops $(v, v) \in E$. Let us introduce a propositional variable p_{i} for every vertex v_{i}. Given two propositional formulas $\varphi(x, y)$ and $\psi(x, y)$ over two variables x, y, consider the set of formulas

$$
\begin{equation*}
\Delta_{\varphi, \psi}(G)=\left\{\varphi\left(p_{i}, p_{j}\right) \mid\left(v_{i}, v_{j}\right) \in E\right\} \cup\left\{\psi\left(p_{i}, p_{j}\right) \mid\left(v_{i}, v_{j}\right) \notin E\right\} . \tag{1.1}
\end{equation*}
$$

For which values of $k \in \mathbb{N}$ there are formulas φ, ψ such that for every simple graph G, the set $\Delta_{\varphi, \psi}(G)$ is satisfiable if, and only if, G is k colourable?
[solution]

1.5 Compactness

Problem 1.5.1 (Compactness theorem for propositional logic). Let Γ be an infinite set of formulas of propositional logic. Show that if every finite subset of Γ is satisfiable, then Γ is satisfiable. Hint: Use König's lemma. [solution]

Problem 1.5.2 (Compactness implies König's lemma). Use the compactness theorem for propositional logic to prove König's lemma. [solution]

Problem 1.5.3 (De Bruijn-Erdôs theorem). Let k be a fixed natural number. Prove, using the compactness theorem, that if every finite subgraph of an infinite graph $G=(V, E)$ is k-colourable, then G is k-colourable as well.
[solution]
Problem 1.5.4. Consider an infinite set of people with the property that 1) each man has a finite number of girlfriends, and 2) any $k \in \mathbb{N}$ men collectively have at least k girlfriends. Demonstrate that each man can marry one of his girlfriends without committing polygamy, i.e., no man marries two or more women (polygyny) and no woman marries two or more men (polyandry). Are the two assumptions necessary? [solution]
Problem 1.5.5. The following equivalence holds, for any truth assignment ϱ :

$$
\varrho \vDash r \leftrightarrow\left(p_{0} \vee p_{1}\right) \quad \text { if, and only if, } \varrho(r)=\max \left(\varrho\left(p_{0}\right), \varrho\left(p_{1}\right)\right) .
$$

Does there exists a (possibly infinite) set of formulas Γ over propositional variables $\left\{r, p_{0}, p_{1}, \ldots\right\}$ s.t., for every ϱ,

$$
\varrho \vDash \Gamma \quad \text { if, and only if, } \varrho(r)=\max _{n \in \mathbb{N}}\left(\varrho\left(p_{n}\right)\right) ? \quad \text { [solution] }
$$

Problem 1.5.6. Does there exist a set Γ of sentences over propositional variables $\left\{p_{0}, p_{1}, \ldots\right\}$ s.t. the valuations ϱ satisfying Γ are exactly those s.t. $\left\{i \in \mathbb{N} \mid \varrho\left(p_{i}\right)=1\right\}$ is finite?
[solution]
Definition 1.5.7. A topological space is a pair (X, τ), where X is a nonempty set and $\tau \subseteq 2^{X}$ is a family of subsets of X containing the empty set $\varnothing \in \tau$ and closed under arbitrary unions and finite intersections. A set $Y \in \tau$ is called open and a set $Z \subseteq X$ is closed if it is the complement
$X \backslash Y$ of some open set $Y \in \tau$. A topological space is countably compact if every countable collection of closed sets $\mathcal{C} \subseteq 2^{X}$ has non-empty intersection $\cap \mathcal{C} \neq \varnothing$ if, and only if, every finite subcollection thereof $\mathcal{D} \subseteq_{\text {fin }} \mathcal{C}$ has non-empty intersection $\cap \mathcal{D} \neq \varnothing$.

Problem 1.5.8 (The name of the game). Let Z be a countable set of propositional variables and for a set of sentences Γ let

$$
\llbracket \Gamma \rrbracket=\{\varrho: Z \rightarrow\{0,1\} \mid \varrho \vDash \Gamma\} .
$$

Consider the topological space (X, τ), where X is the set of all valuations [T] and τ is the topology generated by basic open sets of the form $\llbracket \varphi \rrbracket$. Show, using the compactness theorem for propositional logic, that (X, τ) is a countably compact topological space.
[solution]

1.6 Resolution

Let Γ be a set of formulas. The following inference rule is called Robinson's resolution principle:

$$
\begin{equation*}
\frac{\Gamma \vdash p \vee \varphi \quad \Gamma \vdash \neg p \vee \psi}{\Gamma \vdash \varphi \vee \psi} \tag{R}
\end{equation*}
$$

A set of inference rules is sound if it preserves logical entailment:

$$
\Gamma \vdash \varphi \quad \text { implies } \quad \Gamma \vDash \varphi .
$$

Problem 1.6.1 (Resolution is sound). Show that the resolution rule (R) is sound. Hint: Proceed by induction on the length of derivations. [solution] A set of inference rules is complete if it can prove all logical entailments,

$$
\Gamma \vDash \varphi \quad \text { implies } \quad \Gamma \vdash \varphi,
$$

and refutation complete if it can derive a contradiction from any unsatisfiable set of formulas:

$$
\Gamma \vDash \perp \quad \text { implies } \quad \Gamma \vdash \perp .
$$

Problem 1.6.2 (Resolution is refutation complete). Show that resolution (R) is refutation complete when Γ is a set of clauses. Is it complete? Hint: Proceed by induction on the number of propositional variables. [solution]
(*) Problem 1.6.3 (Pigeonhole formulas [15]). Let there be m pigeons and n holes, and for every $1 \leq i \leq m$ and $1 \leq j \leq n$, let $p_{i, j}$ be a propositional variable encoding that pigeon i is in hole j. Consider the following CNF family of pigeonhole formulas

$$
\varphi_{m, n} \equiv \bigwedge_{i=1}^{m} \bigvee_{j=1}^{n} p_{i j} \wedge \bigwedge_{j=1}^{n} \bigwedge_{i=1}^{m} \bigwedge_{k=i+1}^{m} \neg p_{i j} \vee \neg p_{k j}
$$

stating that 1) each pigeon is inside some hole, and 2) no hole contains two pigeons. Show that $\varphi_{n+1, n}$ has only resolution refutation trees of size exponential in n.
[solution]

1.7 Interpolation

Definition 1.7.1. An interpolant of two propositional formulas φ, ψ satisfying $\vDash \varphi \rightarrow \psi$ is a formula ξ containing only propositional variables occurring both in φ and in ψ s.t. $\vDash \varphi \rightarrow \xi$ and $\vDash \xi \rightarrow \psi$.

Problem 1.7.2 (Propositional interpolation). Let φ and ψ be two formulas of classical propositional logic s.t. $\vDash \varphi \rightarrow \psi$. Show that there exists a formula ξ interpolating φ, ψ.

The following problem presents a simplified version of Beth's definability theorem [4] in the context of propositional logic.

Problem 1.7.3 (Beth's definability theorem). Let φ be a formula of propositional logic and let p, q be two propositional variables s.t. p occurs in φ, q does not occur in φ, and

$$
\varphi, \varphi[p \mapsto q] \vDash p \leftrightarrow q . \quad \text { (implicit definability of } p \text {) }
$$

Prove that there exists a formula ψ not containing p, q s.t.

$$
\varphi \vDash p \leftrightarrow \psi . \quad(\text { explicit definability } p)
$$

Hint: Use interpolation.
Problem 1.7.4. Prove the following infinite extension of the interpolation theorem for propositional logic: If Δ, Γ are two sets of formulas satisfying $\Gamma \vDash \Delta$, then there is a set of formulas Θ containing only propositional variables occurring both in (some formula of) Γ and in (some formula of) Δ s.t. $\Gamma \vDash \Theta$ and $\Theta \vDash \Delta$.
(*) Problem 1.7.5 (Interpolants and circuit complexity [21]). Show that if one could bound the circuit size of an interpolant by a polynomial in the size of the input formulas, then any disjoint pair of NPTIME languages would be separable by a circuit of polynomial size. Deduce that NPTIME ncoNPTIME would have polynomial size circuits in this case.
[solution]
The following result appeared in [18, Theorem 6.1], [24, Theorem 1], and [19, Theorem 2].
(*) Problem 1.7.6 (Resolution has polynomial interpolation). A proof system has the polynomial interpolation property if, whenever $\neg(\varphi \rightarrow \psi)$ has
a proof of size n, there exists an interpolant ξ of size polynomial in n. Show that resolution has the polynomial interpolation property.
[solution]

Chapter 2

First-order predicate logic

Preliminaries

Syntax. A signature is a set of pairs

$$
\Sigma=\left\{f_{1}: l_{1}, \ldots, f_{m}: l_{m}, R_{1}: k_{1}, \ldots, R_{n}: k_{n}\right\}, \quad \text { (signature) }
$$

where each functional symbol f_{i} comes equipped with an arity $l_{i} \in \mathbb{N}$, and similarly for each relational symbol R_{j}. A formula of first-order logic is generated by the following abstract syntax

$$
\begin{aligned}
& t, u, v:: \equiv x \mid f_{i}\left(t_{1}, \ldots, t_{l_{i}}\right) \\
& \varphi, \psi:: \perp|\mathrm{T}| R_{j}\left(t_{1}, \ldots, t_{k_{j}}\right)\left|t_{1}=t_{2}\right| \varphi \wedge \psi|\varphi \vee \psi| \neg \varphi|\forall x . \varphi| \exists x . \varphi . \\
& \text { (formulas) }
\end{aligned}
$$

where x comes from a countable set of variables. Formulas of the form $R_{j}\left(t_{1}, \ldots, t_{k_{j}}\right)$ and $t_{1}=t_{2}$, as well as \perp and T are called atomic formulas. We assume that the scope of quantifiers \exists, \forall extends as far to the right as possible. For example, $\exists x \cdot p(x) \vee q(x)$ stands for $\exists x \cdot(p(x) \vee q(x))$. We write $u \neq v$ as an abbreviation for $\neg(u=v)$.

The quantifier rank of a formula φ, denoted $\operatorname{rank}(\varphi)$, is the maximal depth of nesting of its quantificators, as expressed by the following
recurrence:

$$
\begin{aligned}
\operatorname{rank}(\perp) & =\operatorname{rank}(\mathrm{T})=0 \\
\operatorname{rank}\left(R_{j}\left(t_{1}, \ldots, t_{k_{j}}\right)\right) & =0, \\
\operatorname{rank}(\varphi \wedge \psi) & =\operatorname{rank}(\varphi \vee \psi)=\max (\operatorname{rank}(\varphi), \operatorname{rank}(\psi)), \\
\operatorname{rank}(\neg \varphi) & =\operatorname{rank}(\varphi), \\
\operatorname{rank}(\forall x \cdot \varphi) & =\operatorname{rank}(\exists x \cdot \varphi)=1+\operatorname{rank}(\varphi) .
\end{aligned}
$$

A formula φ is quantifier-free if $\operatorname{rank}(\varphi)=0$, i.e., there are no quantifiers. A variable x is free in a formula φ if no occurrence of x falls under the scope of a quantifier $\exists x$ or $\forall x$. A sentence is a formula with no free variables. A sentence is universal if it is of the form $\forall x_{1} \ldots \forall x_{n} . \varphi$, where φ is quantifier-free; existential sentences are defined analogously. A formula is positive if it does not contain negations.

Let φ be a formula, let x be a variable, and let t be a term. By $\varphi[x \mapsto t]$ we denote the formula obtained from φ by replacing every free occurrence of x by t.

Semantics. Let Σ be a signature. A Σ-structure (or just structure when the signature is clear from the context) is a tuple

$$
\begin{equation*}
\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right) \tag{structure}
\end{equation*}
$$

where A is a domain, $f_{i}^{\mathfrak{A}}$ is a function $A^{l_{i}} \rightarrow A$ for every $1 \leq i \leq m$, and $R_{j}^{\mathfrak{A}}$ is a relation subset of $A^{k_{j}}$ for every $1 \leq j \leq n$. To keep the notation light, we often write just f_{i} to denote its interpretation $f_{i}^{\mathfrak{A}}$, and similarly for R_{j}. A relational structure is a structure $\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right)$ with $m=0$ function symbols; for a subset of the domain $B \subseteq A$, the restriction of \mathfrak{A} to B (the substructure of \mathfrak{A} induced by $B)$ is defined as $\left.\mathfrak{A}\right|_{B}=\left(B,\left.R_{1}^{\mathfrak{A}}\right|_{B}, \ldots,\left.R_{n}^{\mathfrak{A}}\right|_{B}\right)$, where $\left.R_{j}^{\mathfrak{A}}\right|_{B}=R_{i}^{\mathfrak{A}} \cap B^{k_{j}}$. Equality, \perp and T are not subject to interpretation. For instance, if $\mathfrak{A}=\left(A, E^{\mathfrak{A}}\right)$ is a graph, then $\left.\mathfrak{A}\right|_{B}$ is the subgraph induced by B. A valuation is a mapping ϱ assigning a value $\varrho(x) \in A$ to every variable x. Let ϱ be a valuation, x be a variable, and let $a \in A$ be an element of the domain. We denote by $\varrho[x \mapsto a]$ the new valuation which evaluates to a on x, and agrees with ϱ otherwise. Given a structure \mathfrak{A}, a valuation ϱ extends
to terms by structural induction as

$$
\begin{aligned}
\llbracket x \rrbracket_{\varrho}^{\mathfrak{A}} & =\varrho(x), \\
\llbracket f_{i}\left(t_{1}, \ldots, t_{l_{i}}\right) \rrbracket_{\varrho}^{\mathfrak{A}} & =f_{i}^{\mathfrak{A}}\left(\llbracket t_{1} \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots, \llbracket t_{l_{i}} \rrbracket_{\varrho}^{\mathfrak{A}}\right) .
\end{aligned}
$$

The semantics of a first-order formula φ in a structure \mathfrak{A} and valuation ϱ is defined by structural induction as

$$
\begin{array}{ll}
\mathfrak{A}, \varrho \vDash \top & \\
\mathfrak{A}, \varrho \not \vDash \perp & \\
\mathfrak{A}, \varrho \vDash R_{j}\left(t_{1}, \ldots, t_{k_{j}}\right) & \text { iff } \\
\mathfrak{A}, \varrho \vDash t_{1}=t_{2} & \text { iff } \left.\llbracket t_{1} \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots, \llbracket t_{k_{j}} \rrbracket_{\varrho}^{\mathfrak{A}}\right) \in t_{2} \rrbracket_{\varrho}^{\mathfrak{A}}, \\
\mathfrak{A}, \varrho \vDash \varphi \wedge \psi & \text { iff } \\
\mathfrak{A}, \varrho \vDash \varphi \text { and } \mathfrak{A}, \varrho \vDash \psi, \\
\mathfrak{A}, \varrho \vDash \varphi \vee \psi & \text { iff } \\
\mathfrak{A}, \varrho \vDash \varphi \text { or } \mathfrak{A}, \varrho \vDash \psi, \\
\mathfrak{A}, \varrho \vDash \neg \varphi & \text { iff } \\
\mathfrak{A}, \varrho \nLeftarrow \varphi, \\
\mathfrak{A}, \varrho \vDash \forall x . \varphi & \text { iff } \\
\mathfrak{A}, \varrho \vDash \exists x \cdot \varphi & \text { for every } a \in A, \mathfrak{A}, \varrho[x \mapsto a] \vDash \varphi, \\
\text { for some } a \in A, \mathfrak{A}, \varrho[x \mapsto a] \vDash \varphi .
\end{array}
$$

We write $\llbracket \varphi \rrbracket^{\mathfrak{A}}=\{\varrho \mid \mathfrak{A}, \varrho \vDash \varphi\}$ for the set of valuations satisfying φ; by fixing a total order on the k free variables of φ, we can equivalently interpret $\llbracket \varphi \rrbracket^{\mathfrak{A}}$ as a subset of A^{k}. When φ is a sentence, we sometimes omit the valuation and just write $\mathfrak{A} \vDash \varphi$.

When Γ is a set of sentences over a signature Σ, we write $\mathfrak{A} \vDash \Gamma$ whenever $\mathfrak{A} \vDash \varphi$ for every $\varphi \in \Gamma$. The set of models of Γ is denoted by

$$
\operatorname{Mod}(\Gamma)=\{\mathfrak{A} \text { over signature } \Sigma \mid \mathfrak{A} \vDash \Gamma\} .
$$

Lemma 2.0.1 (Substitution lemma). Let φ be a formula, x a variable, and t a term. Assume the following capture-avoiding condition:

$$
\text { no free occurrence of } x \text { in } \varphi
$$

falls under the scope of a quantifier $Q y$ with $y \in F V(t)$
Then,

$$
\begin{equation*}
\mathfrak{A}, \varrho \vDash \varphi[x \mapsto t] \quad \text { if, and only if, } \quad \mathfrak{A}, \varrho[x \mapsto a] \vDash \varphi, \tag{2.1}
\end{equation*}
$$

where $a=\llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}$.
Note that both directions of the lemma require the condition (\dagger).

2.1 Definability

Definition 2.1.1. Let Σ be a signature. We say that an isomorphismclosed class of structures \mathcal{A} over Σ is definable (equivalently, expressible) in first-order logic if there is a sentence φ s.t.

$$
\mathfrak{A} \vDash \varphi \quad \text { if, and only if, } \quad \mathfrak{A} \in \mathcal{A}
$$

The theme of this section is expressing in first-order logic properties of commonly occurring mathematical structures. The counter-point is provided by the inexpressibility results in sections 2.9 and 2.12 .

2.1.1 Real numbers

In this section, consider the structure

$$
\begin{equation*}
\mathfrak{A}=\left(\mathbb{R},+^{\mathfrak{A}}, *^{\mathfrak{A}}, 0^{\mathfrak{A}}, 1^{\mathfrak{A}}\right) \tag{2.2}
\end{equation*}
$$

where \mathbb{R} is a set of real numbers and the symbols $+, *, 0,1$ are interpreted as the corresponding operations on real numbers.
Problem 2.1.2. Show that one can define the natural order " \leq " on \mathbb{R}^{2} as a formula $\varphi(x, y)$ of first-order logic of two free variables x, y. [solution]

Problem 2.1.3 (Periodicity). Extend the signature of the reals with an arbitrary function of one variable $f: \mathbb{R} \rightarrow \mathbb{R}$. Show that one can express as a first-order logic sentence φ that f is a periodic function whose smallest positive period is 1 .
[solution]
Problem 2.1.4 (Continuity and uniform continuity). Express that f is a continuous, resp., uniformly continuous function.
[solution]
Problem 2.1.5 (Differentiability). With the same setting as in Problem 2.1.3 "Periodicity", write a formula of first-order logic $\varphi(x)$ with one free variable x expressing that f is differentiable in x.
[solution]

2.1.2 Cardinality constraints

Problem 2.1.6 (Cardinality constraints I). For every n, construct a sentence $\varphi_{\geq n}$ of first-order logic with equality, s.t. the following holds for every
model $\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right)$:

$$
\mathfrak{A} \vDash \varphi_{\geq n} \quad \text { if, and only if, } \quad|A| \geq n .
$$

Can $\varphi_{\geq n}$ be a universal sentence?
Problem 2.1.7 (Cardinality constraints II). This exercise is dual to Problem 2.1.6 "Cardinality constraints I". For every n, construct a sentence $\varphi_{\leq n}$ of first-order logic with equality, s.t. the following holds for every model $\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right):$

$$
\mathfrak{A} \vDash \varphi_{\leq n} \quad \text { if, and only if, } \quad|A| \leq n .
$$

Can $\varphi_{\leq n}$ be an existential sentence?
[solution]

2.1.3 Characteristic sentences

Problem 2.1.8 (Characteristic sentences). Show that for each finite structure $\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right)$ there exists a first-order sentence $\delta_{\mathfrak{A}}$, called the characteristic sentence of \mathfrak{A}, s.t., for all structures \mathfrak{B},

$$
\mathfrak{B} \vDash \delta_{\mathfrak{A}} \quad \text { if, and only if, } \quad \mathfrak{B} \cong \mathfrak{A} .
$$

In other words, $\delta_{\mathfrak{A}}$ uniquely determines \mathfrak{A} up to isomorphism. [solution]

2.1.4 Miscellanea

Problem 2.1.9 (Binary trees). In this problem we consider finite trees \mathfrak{T} where each vertex can have zero, one, or two children. The signature consists of two binary relational symbols L and R : $L(x, y)$ means that y is the left son of x, and $R(x, y)$ for the right son; there is always at most one left son, and at most one right son. Prove that, for any natural number $n \in \mathbb{N}$, one can express that \mathfrak{T} is the complete binary tree of depth n as a first-order logic sentence φ_{n} of size $O(n)$ using only two variables x and y (which can be re-quantified as often as necessary).
[solution]
Problem 2.1.10 (Conway's "Game of Life"). Conway's game of life is played on the bidimensional grid

$$
\mathfrak{A}=\left(\mathbb{Z} \times \mathbb{Z}, \leq_{1}, \leq_{2}, U\right)
$$

where $U \subseteq \mathbb{Z} \times \mathbb{Z}$ is a unary relation (on \mathfrak{A}) denoting the alive cells (cells in $(\mathbb{Z} \times \mathbb{Z}) \backslash U$ are dead $)$, and $\left(x_{1}, x_{2}\right) \leq_{i}\left(y_{1}, y_{2}\right)$ holds iff $x_{i} \leq y_{i}$, for $i \in\{1,2\}$. The neighbours of a cell (x, y) are the eight cells $\left(x^{\prime}, y^{\prime}\right) \neq(x, y)$ satisfying $\left|x-x^{\prime}\right| \leq 1$ and $\left|y-y^{\prime}\right| \leq 1$. At each discrete time step, the status of all cells in the grid changes simultaneously, according to the following rules:

- a dead cell with exactly three alive neighbours becomes alive;
- an alive cell with two or three living neighbours remains alive;
- all other cells remain or become dead.

Prove that, for any $k \in \mathbb{N}$, there is a formula $\varphi_{k}(x)$ of one free variable s.t. $\mathfrak{A}, x: a \vDash \varphi$ if cell a is alive after the k-th step of the game of life, starting from the position described by U.
[solution]

2.2 Normal forms

Problem 2.2.1 (Negation normal form). A formula φ is in negation normal form (NNF) if negation is only applied to atomic formulas, i.e., for every subformula of the form $\neg \psi, \psi \equiv R_{j}(\cdots)$ is atomic. Show that each firstorder logic formula can be transformed into an equivalent one in NNF. [solution]
Problem 2.2.2 (Prenex normal form). A formula φ is in prenex normal form (PNF) if it is of the form

$$
\varphi \equiv Q_{1} x_{1} \cdots Q_{n} x_{n} . \psi
$$

where $Q_{i} \in\{\forall, \exists\}$ and ψ is quantifier-free. Show that for each first-order logic formula there is an equivalent one in PNF.
[solution]
Problem 2.2.3. Show that there exists a sentence of first-order logic φ s.t. for any logically equivalent sentence ψ in PNF, ψ has greater quantifier $\operatorname{rank}: \operatorname{rank}(\psi)>\operatorname{rank}(\varphi)$.
[solution]
Problem 2.2.4. Fix a finite signature Σ. Is there a $k \in \mathbb{N}$ s.t. every firstorder sentence φ over Σ is logically equivalent to a sentence of rank k ?
[solution]

2.3 Satisfaction relation

Problem 2.3.1. In which structures is the following formula of one free variable $\varphi(x) \equiv \exists y . y \neq x x$ satisfied? And the closed formula $\psi \equiv \exists y . y \neq$ y obtained by "naive" substitution of y in place of x ? [solution]

Problem 2.3.2. Consider the formula

$$
\varphi \equiv R(x, f(x)) \rightarrow \forall x \exists y \cdot R(f(y), x)
$$

Construct two structures $\mathfrak{A}=\left(A, f^{\mathfrak{A}}, R^{\mathfrak{A}}\right)$ and $\mathfrak{B}=\left(B, f^{\mathfrak{B}}, R^{\mathfrak{B}}\right)$ and valuations $\rho^{\mathfrak{A}}$, $\rho^{\mathfrak{B}}$ s.t. $\mathfrak{A}, \rho^{\mathfrak{A}} \vDash \varphi$ and $\mathfrak{B}, \rho^{\mathfrak{B}} \neq \varphi$.
[solution]
Problem 2.3.3. For each one of the following formulas, check whether it is 1) a tautology, and 2) satisfiable:

$$
\begin{aligned}
\varphi_{1} & \equiv(\forall x \cdot P(x) \vee Q(f(x))) \rightarrow \forall x \exists y \cdot P(x) \vee Q(y), \\
\varphi_{2} & \equiv(\forall x \exists y \cdot P(x) \vee Q(y)) \rightarrow \forall x \cdot P(x) \vee Q(f(x)), \\
\varphi_{3} & \equiv(\forall x \cdot P(x) \vee Q(f(x))) \wedge \exists x \forall y \cdot \neg P(x) \wedge \neg Q(y), \\
\varphi_{4} & \equiv(\exists x \cdot(\forall y \cdot Q(y)) \rightarrow P(x)) \rightarrow \exists x \cdot Q(x) \rightarrow P(x) . \quad \text { [solution] }
\end{aligned}
$$

Problem 2.3.4. Show that the following formula has only infinite models:
$\varphi \equiv \forall x . \exists y \cdot R(x, y) \wedge \forall x . \neg R(x, x) \wedge \forall x, y, z . R(x, y) \wedge R(y, z) \rightarrow R(x, z)$. [solution]

Problem 2.3.5. For each of the following signatures, write a sentence that has only infinite models:

1. One unary functional symbol and no relational symbols.
2. One binary relation symbol and no function symbols. [solution]

Problem 2.3.6. Show that the following formula is not a tautology:

$$
\varphi \equiv(\forall x \forall y \cdot f(x)=f(y) \rightarrow x=y) \rightarrow \forall x \exists y \cdot f(y)=x
$$

Does its negation have a finite model?
Problem 2.3.7. Show that the following formula is not a tautology:

$$
\varphi \equiv \exists x \exists y \exists u \exists v \cdot(\neg(x=u) \vee \neg(y=v)) \wedge f(x, y)=f(u, v)
$$

1. How many non-isomorphic finite models does $\neg \varphi$ have?
2. Is $\psi \equiv \varphi \vee \forall x \forall y . x=y$ a tautology?

Problem 2.3.8. Consider the set Δ consisting of the sentences

$$
\begin{aligned}
& \exists x \exists y . x \neq y, \\
& \forall x \cdot \neg E(x, x) \text {, and } \\
& \forall x \forall y \cdot x \neq y \rightarrow \exists z \cdot E(x, z) \wedge E(y, z) .
\end{aligned}
$$

What is the smallest possible number of edges in a graph $\mathfrak{A}=\left(A, E^{\mathfrak{A}}\right)$ which is a model of Δ ?
[solution]
Problem 2.3.9. Prove that each satisfiable existential sentence has both a finite and an infinite model.
[solution]
Problem 2.3.10. Find two universal sentences φ_{1}, φ_{2} s.t.

1. φ_{1} has a finite model, but no infinite one.
2. φ_{2} has an infinite model, but no finite one. [solution]

Problem 2.3.11 (Constructibility). Is it the case, that if $\mathfrak{A} \vDash \exists x . \varphi$, then there exists a term t in the language of \mathfrak{A} s.t. $\mathfrak{A} \vDash \varphi[x \mapsto t]$? In other words, are existential witnesses constructible?
[solution]

2.4 Skolemisation

We would like to remove the existential quantifiers while preserving satisfiability. Intuitively, $\forall \bar{x} . \exists y \cdot \varphi(\bar{x}, y)$ is logically equivalent to $\exists f . \forall \bar{x} \cdot \varphi(\bar{x}, f(\bar{y}))$, however we cannot directly express second-order quantification in first-order logic. This difficulty disappears if we do not insist on logical equivalence but just on equisatisfiability, since we can use the implicit second-order quantification of the satisfiability problem. We demonstrate this in detail in the case of one quantifier alternation.
Problem 2.4.1. Let φ be a formula and f a unary function symbol s.t. 1) f is not used in φ, and 2) every free occurrence of variable y in φ is not under the scope of a quantifier binding variable x. Show that

$$
\forall x . \exists y . \varphi \text { is satisfiable if, and only if, } \forall x . \varphi[y \mapsto f(x)] \text { is satisfiable. }
$$

Is the first assumption necessary? And the second one? Find counterexamples in each case.
[solution]
Problem 2.4.2 (Skolemisation). Show that for every sentence φ there exists a universal sentence $\forall x_{1}, \ldots, x_{n} . \psi$ (with ψ quantifier-free) s.t.

$$
\varphi \text { satisfiable if, and only if, } \vDash \forall x_{1}, \ldots, x_{n} . \psi \text { satisfiable. }
$$

Hint: Generalise Problem 2.4.1.
[solution]
Problem 2.4.3 (Herbrandisation). Show that for every sentence φ there exists an existential sentence $\exists x_{1}, \ldots, x_{n} . \psi$ (with ψ quantifier-free) s.t.

$$
\vDash \varphi \text { if, and only if, } \exists x_{1}, \ldots, x_{n} \cdot \psi
$$

Hint: Use Problem 2.4.2 "Skolemisation".
[solution]

2.5 Herbrand models

Definition 2.5.1. Let $\Sigma=\left\{f_{1}, \ldots, f_{m}, R_{1}, \ldots, R_{n}\right\}$ be a signature. A Herbrand model is a structure $\mathfrak{H}=\left(H, f_{1}^{\mathfrak{H}}, \ldots, f_{m}^{\mathfrak{H}}, R_{1}^{\mathfrak{H}}, \ldots, R_{n}^{\mathfrak{H}}\right)$ over Σ s.t. the domain H (Herbrand universe) is the set of all ground terms constructible from Σ and every function symbol f_{i} is interpreted "as itself" $f_{i}^{\mathfrak{H}}(\bar{u})=f_{i}(\bar{u})$. This is a model built from pure syntax.

Problem 2.5.2 (Herbrand's theorem). Consider a universal sentence $\varphi \equiv$ $\forall \bar{x} . \psi$, with ψ quantifier-free. Show that φ is satisfiable if, and only if, it has a Herbrand model. Does this hold for non-universal sentences? [solution]
Problem 2.5.3. Consider a universal sentence of the form $\varphi \equiv \forall \bar{x} \cdot \psi$, with ψ quantifier-free. Show that φ is unsatisfiable if, and only if, there exist tuples of ground terms $\bar{u}_{1}, \ldots, \bar{u}_{n}$ s.t. the following is unsatisfiable:

$$
\begin{equation*}
\psi\left[\bar{x} \mapsto \bar{u}_{1}\right] \wedge \cdots \wedge \psi\left[\bar{x} \mapsto \bar{u}_{n}\right] . \tag{2.3}
\end{equation*}
$$

Hint: Use Problem 2.5.2 "Herbrand's theorem" and Problem 2.9.1 "Compactess theorem".

2.6 Logical consequence

Problem 2.6.1. Consider the following two sentences:

$$
\begin{aligned}
& \varphi \equiv \forall x \forall y \cdot y=f(g(x)) \rightarrow \exists u \cdot u=f(x) \wedge y=g(u), \text { and } \\
& \psi \equiv \forall x \cdot f(g(f(x)))=g(f(f(x))) .
\end{aligned}
$$

Is it the case that φ logically implies ψ, in symbols $\varphi \vDash \psi ? \quad$ [solution]
Problem 2.6.2. Let f be a unary function symbol and, for $n \in \mathbb{N}$, denote the n-fold application of f to x by

$$
f^{n}(x):=\underbrace{f(\cdots(f(x)) \cdots)}_{n}
$$

Does the following hold?

$$
\left\{\forall x \cdot f^{n}(x)=x\right\} n=2,3,5,7 \vDash \forall x \cdot f^{11}(x)=x . \quad \text { [solution] }
$$

2.6.1 Independence

Definition 2.6.3. A set of formulas Δ is independent if, for each $\varphi \in \Delta$, $\Delta \backslash\{\varphi\} \not \vDash \varphi$.

Independence of an axiom φ in set of axioms Δ is shown by providing a model of $\Delta \backslash\{\varphi\}$ which is not a model of φ.
Problem 2.6.4. Show that the set of axioms of equivalence relations " \approx " are independent:

$$
\begin{aligned}
\Delta=\{ & \forall x \cdot x \approx x, & & \text { (reflexivity) } \\
& \forall x \forall y \cdot x \approx y \rightarrow y \approx x, & & \text { (symmetry) } \\
& \forall x \forall y \forall z \cdot x \approx y \wedge y \approx z \rightarrow x \approx z\} . & & \text { (transitivity) }
\end{aligned} \quad \text { [solution] }
$$

Problem 2.6.5. Show that the set of axioms of linear orders " \leq " are independent:

$$
\begin{array}{rlrl}
\Delta_{\text {lin }}=\{\forall x \forall y \cdot x \leq y \wedge y \leq x \rightarrow x=y, & & \text { (antisymmetry) } \\
& \forall x \forall y \forall z \cdot x \leq y \wedge y \leq z \rightarrow x \leq z, & & \text { (transitivity) } \\
& \forall x \forall y \cdot x \leq y \vee y \leq x\} . & & \text { (totality) }
\end{array}
$$

Problem 2.6.6. Show that the set of axioms of groups with a binary operation "*" and unit element " 1 " are independent:

$$
\begin{aligned}
\Delta=\{ & \forall x \cdot 1 * x=x \wedge x * 1=x, & & \text { (unit) } \\
& \forall x, y, z \cdot(x * y) * z=x *(y * z), & & \text { (associativity) } \\
& \forall x \cdot \exists y \cdot x * y=1 \wedge y * x=1\} . & & \text { (inverses) }
\end{aligned}
$$

Problem 2.6.7. Prove that every finite set of sentences Δ contains a subset $\Delta^{\prime} \subseteq \Delta$ s.t. Δ^{\prime} is independent and $\Delta^{\prime} \vDash \Delta$. Is the finiteness assumption necessary?
[solution]
We have seen in Problem 2.6.7 that in general infinite set of sentences do not have any independent subset. In the next exercise we look for an equivalent independent set of axioms.

Problem 2.6.8. Prove that every class of structures over a finite signature which is axiomatised by a set of first-order sentences, can be axiomatised by an independent set of first-order sentences.
[solution]

2.7 Axiomatisability

Definition 2.7.1. Let Σ be a signature. We say that a class of structures \mathcal{A} over Σ is axiomatisable in first-order logic if there is a set of sentences Δ s.t.

$$
\mathfrak{A} \vDash \Delta \quad \text { if, and only if, } \quad \mathfrak{A} \in \mathcal{A} .
$$

The following problem shows a perhaps surprising property of countable classes of finite structures.

Problem 2.7.2 (Classes of finite structures are axiomatisable). Fix a finite signature Σ. Show that any countable class \mathcal{A} of finite structures over Σ is axiomatisable. Hint: Use the characteristic sentences from Problem 2.1.8 "Characteristic sentences".
[solution]
Problem 2.7.3 (Universal axiomatisations). Recall that \mathfrak{B} is an induced substructure of \mathfrak{A} if if can obtained from the latter by taking a subset of the domain, and restricting the relations to the new domain. Show that an isomorphism-closed class \mathcal{A} of finite relational structures can be axiomatised by a set of universal sentences of first-order logic if, and only if, \mathcal{A} is closed under induced substructures.
[solution]

2.8 Spectrum

Definition 2.8.1. The spectrum of a sentence φ, denoted $\operatorname{Spec}(\varphi)$, is the set of all positive integers $n \in \mathbb{N}$ s.t. φ has a model of cardinality n :

$$
\operatorname{Spec}(\varphi)=\{|A| \mid \mathfrak{A}=(A, \ldots), \mathfrak{A} \vDash \varphi, A \text { finite }\} \subseteq \mathbb{N} .
$$

The notion of spectrum pertains to which cardinalities can be represented by first-order sentences ("recognised" in the automata-theoretic jargon), and does not take into account the multiplicity of each cardinality, i.e., the number of non-isomorphic models of a given size.

2.8.1 Examples

In the following problems, in order to show that a set of natural numbers $N \subseteq \mathbb{N}_{>0}$ is a first-order spectrum, one must exhibit a first-order sentence φ over a chosen signature s.t. $\operatorname{Spec}(\varphi)=N$.

Problem 2.8.2 (Finite and cofinite sets are spectra). Show that if $N \subseteq \mathbb{N}_{>0}$ is either finite or co-finite (i.e., its complement $\mathbb{N}_{>0} \backslash N$ is finite), then N is a first-order spectrum.
[solution]
Problem 2.8.3 (Even numbers). Show that the set of all positive even numbers $\left\{2 \cdot n \mid n \in \mathbb{N}_{>0}\right\}$ is a first-order spectrum. Hint: Use a unary function symbol f.
[solution]
Problem 2.8.4. Show that the set of squares $\left\{n^{2} \mid n \in \mathbb{N}_{>0}\right\}$ is a first-order spectrum. Hint: Use a binary function symbol f and a unary relation symbol U.
[solution]
Problem 2.8.5. Show that the set $\left\{m \cdot n \mid m, n \in \mathbb{N}_{>0}\right\}$ of positive composite numbers is a first-order spectrum. Hint: Use a binary function symbol f and two unary relation symbols U, V.
[solution]
Problem 2.8.6. Show that the set of powers of two $\left\{2^{n} \mid n \in \mathbb{N}\right\}$ is a firstorder spectrum. Hint: Axiomatise the membership relation " ϵ ". [solution]

Problem 2.8.7. Show that the set of self-powers $\left\{n^{n} \mid n \in \mathbb{N}_{>0}\right\}$ is a firstorder spectrum. Hint: Axiomatise the relation $\operatorname{Apply}(f, u, v)$, which holds iff " $f(u)=v$ ".
[solution]

Problem 2.8.8. Show that the set of factorials $\{n!\mid n \in \mathbb{N}\}$ is a first-order spectrum. Hint: Axiomatise that the universe is the set of all linear orders on U.
[solution]
Problem 2.8.9. Find a first-order sentence φ s.t. its spectrum is precisely the powers of all prime numbers:

$$
\operatorname{Spec}(\varphi)=\left\{p^{n} \mid p, n \in \mathbb{N}, p \text { prime }\right\}
$$

2.8.2 Closure properties

Problem 2.8.10 (Spectra are closed under union). Show that spectra of first-order logic sentences are closed under finite union. [solution]
Problem 2.8.11 (Spectra are closed under intersection). Show that spectra of first-order logic sentences are closed under finite intersection.
[solution]
Note. The related problem of whether first-order spectra are closed under complementation has been posed in 1955 by Günter Asser [3] and it is still open to these days [10]. For spectra of second-order sentences, closure under complement is known and it is the subject of Problem 3.1.3 "Spectrum".

For two sets of natural numbers $M, N \subseteq \mathbb{N}$, we interpret $M+N$ and $M \cdot N$ "á la Minkowski" (i.e., pointwise) as

$$
\begin{aligned}
M+N & :=\{m+n \mid m \in M, n \in N\}, \text { and } \\
M \cdot N & :=\{m * n \mid m \in M, n \in N\} .
\end{aligned}
$$

Problem 2.8.12 (Spectra are closed under addition). Show that spectra of first-order logic sentences are closed under " + ".
[solution]
Problem 2.8.13 (Spectra are closed under multiplication). Show that spectra of first-order logic sentences are closed under " $*$ ".
[solution]
Definition 2.8.14. A set of natural numbers $L \subseteq \mathbb{N}$ is linear if there is a base $b \in \mathbb{N}$ and finitely many periods $p_{1}, \ldots, p_{n} \in \mathbb{N}$ s.t.

$$
L=\left\{b+k_{1} \cdot p_{1}+k_{2} \cdot p_{2}+\cdots k_{n} \cdot p_{n} \mid \text { for some } k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}\right\}
$$

A semilinear set is a finite union of linear sets.

Problem 2.8.15 (Semilinear sets are spectra). Show that any semilinear set not containing 0 is the spectrum of a sentence of first-order logic. [solution]

For a set of natural numbers $M \subseteq \mathbb{N}$, consider the following iteration operation "á la Kleene"

$$
M^{+}=M \cup(M+M) \cup \cdots
$$

Problem 2.8.16 (Spectra and Kleene iteration). Are spectra of first-order logic sentences closed under the iteration operation " $\left(_\right)^{+"}$?. [solution]
Problem 2.8.17 (Doubling). Given a first-order logic sentence φ, construct a sentence ψ s.t.

$$
\operatorname{Spec}(\psi)=\{2 \cdot n \mid n \in \operatorname{Spec}(\varphi)\}
$$

2.8.3 Restricted formulas

Problem 2.8.18 (Spectra with only unary relations). Consider a sentence φ containing only unary relational symbols. Prove that $\operatorname{Spec}(\varphi)$ is either finite or cofinite.
[solution]
The problem above is optimal, in the sense that already with only one unary function symbol one can define spectra which are neither finite nor cofinite, as we show below ${ }^{1}$.

Problem 2.8.19 (Spectra with a unary function). Find a sentence φ with only one unary function symbol f s.t. neither $\operatorname{Spec}(\varphi)$ nor its complement is finite.
[solution]
Problem 2.8.20. Give an example of a sentence of first-order logic φ s.t. $\operatorname{Spec}(\varphi)=\operatorname{Spec}(\neg \varphi)$ using only a single unary relation symbol U. Does such an example exists using only a unary function symbol f ? [solution]

Problem 2.8.21 (Spectra of existential sentences). Show that the spectrum of a existential first-order sentence φ is upward closed, in the sense that $m \in \operatorname{Spec}(\varphi)$ and $n \geq m$ imply $n \in \operatorname{Spec}(\varphi)$. Hint: C.f. Problem 2.11.3 "Fundamental property" (point 3).
[solution]

[^0]Problem 2.8.22 (Spectra of universal sentences). Prove that for every firstorder sentence φ there exists a universal first-order sentence ψ, perhaps over a larger signature, having the same $\operatorname{spectrum} \operatorname{Spec}(\varphi)=\operatorname{Spec}(\psi)$. What if we require that ψ uses only relational symbols? Hint: Use Problem 2.4.2 "Skolemisation".

Problem 2.8.23 (Spectra of $\exists \forall$-sentences). Show that the spectrum of a $\exists \forall$-sentence of first-order logic (i.e., in the so called Bernays-SchönfinkelRamsey class) using only relational symbols is either finite or cofinite. Does this hold for $\forall \exists$-sentences? Hint: Use Problem 2.11.4 "Preservation for $\exists^{*} \forall^{*}$-sentences".
[solution]

2.8.4 Counting models

In this series of problems we study a refinement of the notion of spectrum.
Definition 2.8.24. Let the counting spectrum of φ be the ordered sequence of positive natural numbers $a_{1} a_{2} \cdots \in \mathbb{N}_{>0}^{\omega}$ s.t. , for every n, there are precisely a_{n} nonisomorphic models of φ of cardinality n. This is a strict generalisation of the spectrum, which can be reconstructed as $\left\{n \mid a_{n}>0\right\}$.

Problem 2.8.25. Show that the sequence $a_{n}=n$ is the counting spectrum of a sentence of first-order logic.
[solution]
Problem 2.8.26. Show that the sequence $a_{n}=2^{n}$ is the counting spectrum of a sentence of first-order logic.
[solution]
Problem 2.8.27. Let k be a fixed constant. Show that the sequence a_{n} defined as $\binom{n}{k}$ for $n \geq k$ and 0 for $n<k$ is the counting spectrum of a sentence of first-order logic.
[solution]
Problem 2.8.28. Show that the sequence $a_{n}=n!$ is the counting spectrum of a sentence of first-order logic.
[solution]

2.8.5 Characterisation

The following problem shows a complexity upper bound for spectra of first-order logic.

Problem 2.8.29 (Spectra are in NEXPTIME). Show that the following decision problem is in the complexity class NEXPTIME:

Spectrum membership.
Input: A sentence of first-order $\operatorname{logic} \varphi$ and a number $n \in \mathbb{N}$ encoded in binary.
Output: Is it the case that $n \in \operatorname{Spec}(\varphi)$?
[solution]
Note. In fact, every set in NEXPTIME can be expressed as the spectrum of a sentence of first-order logic. This seminal result was independently proved in the 1970's by Jones and Selman [17] and by Fagin [12] .

2.9 Compactness

Problem 2.9.1 (Compactess theorem). Prove that if $\Gamma \vDash \varphi$, then there exists a finite subset $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ s.t. $\Gamma_{0} \vDash \varphi$. Hint: Use Gödel's completeness theorem.
[solution]
Problem 2.9.2 (Compactness theorem (w.r.t. satisfiability)). Sometimes the compactness theorem is stated in the following form: If every finite subset of Γ is satisfiable, then Γ is also satisfiable. Show that this alternative form is equivalent to Problem 2.9.1 "Compactess theorem". [solution]
Problem 2.9.3 (Compactness in finite structures?). Establish whether the following variant of compactness for finite structures holds: If every finite model of Γ is also a model of φ, then there is a finite subset $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ with the same property.
[solution]
Problem 2.9.4. Prove that if a class \mathcal{A} of structures over a signature Σ and its complement $\operatorname{Mod}(\Sigma) \backslash \mathcal{A}$ are both axiomatisable by a set of firstorder sentences, then each of them is definable by a first-order sentence. [solution]

The previous exercise has the following natural generalisation in terms of separability.

Problem 2.9.5 (Definable separability of axiomatisable classes). We say that two disjoint classes of structures \mathcal{A}, \mathcal{B} are separated by a class \mathcal{C} if $\mathcal{A} \subseteq \mathcal{C}$ and $\mathcal{C} \cap \mathcal{B}=\varnothing$. Show that two disjoint first-order axiomatisable classes are separable by a first-order definable class. Why does this generalise Problem 2.9.4?
[solution]

2.9.1 Nonaxiomatisability

Problem 2.9.6 (Finiteness is not axiomatisable). Show that there is no set of first-order sentences Δ s.t. $\mathfrak{A} \vDash \Delta$ if, and only if, \mathfrak{A} is finite. [solution]

Problem 2.9.7 (Finite diameter is not axiomatisable). The diameter of a graph is the smallest $n \in \mathbb{N} \cup\{\infty\}$ s.t. any two vertices are connected by a path of length at most n. Prove that the class of graphs of finite diameter is not axiomatisable by any set of first-order logic sentences. [solution]

Problem 2.9.8 (Finite colourability is not axiomatisable). A finite colouring of a graph $\mathfrak{G}=(V, E)$ is a mapping $c: V \rightarrow C$, where C is a finite set of colours, s.t. every two vertices connected by an edge get a different colour: $(u, v) \in E$ implies $c(u) \neq c(v)$. Show that the class of finitely colourable graphs cannot be axiomatised by any set of sentences of first-order logic. [solution]
Problem 2.9.9 (Finitely many equivalence classes is not axiomatisable). Show that the class of equivalence relations $\sim \subseteq A \times A$ containing finitely may equivalence classes (i.e., of finite index) is not axiomatisable. [solution]

Problem 2.9.10 (Finite equivalence classes is not axiomatisable). We want to show that the class of equivalence relations $\sim \subseteq A \times A$ where every class is finite is not axiomatisable.

1. A standard way of reasoning is to extend a purported axiomatisation Δ as $\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, where φ_{n} says that there is an equivalence class containing at least n elements:

$$
\varphi_{n} \equiv \exists x_{1} \cdots \exists x_{n} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge x_{i} \sim x_{j} .
$$

Do models of Γ have an infinite equivalence class?
2. If not, how can we amend the φ_{n} 's in order to ensure that Γ has only models with an infinite equivalence class?
[solution]
Problem 2.9.11 (Finitely generated monoids are not axiomatisable). A monoid is a structure

$$
\mathfrak{M}=(M, \circ, e),
$$

where $\circ: M \times M \rightarrow M$ is an associative binary operation with neutral element $e \in M$. A monoid \mathfrak{M} is finitely generated if there exist finitely many elements $a_{1}, \ldots, a_{n} \in M$ s.t. every $a \in M$ is a product of the a_{i} 's. (For example, $\left(A^{*}, \cdot, \varepsilon\right)$ is finitely generated iff the alphabet A is finite.) Prove that the class of finitely generated monoids is not axiomatisable. [solution]
Problem 2.9.12 (Cycles are not axiomatisable). Prove that the class \mathcal{C} of graphs containing a cycle is not axiomatisable by any set of first-order logic sentences.
[solution]

Problem 2.9.13 (Unions of cycles are not axiomatisable). Prove that the class \mathcal{C} of graphs where every vertex belongs to a cycle is not axiomatisable by any set of first-order logic sentences.

Problem 2.9.14 (The Church-Rosser property is not axiomatisable (via compactness)). A binary relation $\rightarrow \subseteq A \times A$ has the Church-Rosser property (CR) if, whenever $a \rightarrow^{*} b$ and $a \rightarrow^{*} c$, there exists d s.t. $b \rightarrow^{*} d$ and $c \rightarrow^{*} d$. Prove that CR is not axiomatisable by any set of first-order logic sentences.
[solution]
Problem 2.9.15 (Strong normalisation is not axiomatisable (via compactness)). A binary relation $\rightarrow \subseteq A \times A$ is strongly normalising (SN) if there is no infinite path

$$
a_{1} \rightarrow a_{2} \rightarrow \cdots \quad\left(a_{1}, a_{2}, \cdots \in A\right)
$$

Prove that SN is not axiomatisable in first-order logic. [solution]
Problem 2.9.16 (Well-orders are not axiomatisable). A well-order is a strict total order $<$ not containing an infinite descending chain $a_{0}>a_{1}>\cdots$. Prove that well-orders are not axiomatisable. [solution]
Problem 2.9.17. Consider the class \mathcal{A} of partial orders (A, \sqsubseteq) with infinitely many minimal elements s.t. every non-minimal element $a \in A$ is a supremum $a=\sqcup B$ of finitely many minimal elements $B=\left\{a_{1}, \ldots, a_{n}\right\}$. Prove that \mathcal{A} is not axiomatisable by any set of sentences of first-order logic.
[solution]
Problem 2.9.18. Prove that if Δ is a set of sentences s.t. $\operatorname{Spec}(\neg \varphi)$ is finite for every $\varphi \in \Delta$, and $\Delta \vDash \psi$, then $\operatorname{Spec}(\neg \psi)$ is also finite. [solution]

Problem 2.9.19. Consider structures \mathfrak{A} over a signature consisting of binary operations,,$+- *$, constants 0,1 , and an additional unary operation f. We say that f is expressible if there is a term $\tau(x)$ with one free variable x not containing f s.t.

$$
\mathfrak{A} \vDash \forall x . \tau(x)=f(x) .
$$

(For example, if $A=\mathbb{R}$ with the usual interpretation of $+,-, *, 0,1$, then f if expressible if it is a polynomial of one variable with integer coefficients.) Prove that the class of structures \mathfrak{A} where f is expressible is not axiomatisable.
[solution]

Problem 2.9.20. We say that a structure \mathfrak{A} over signature Σ has property F if for any two terms s, t with one free variable x, the set of elements $a \in A$ satisfying the equation

$$
\mathfrak{A}, x: a \vDash s=t
$$

is either finite or the whole A. (For example, the field of real numbers $(F,+, *, 0,1)$ has property F , since terms define polynomial functions, and the latter are either identically 0 or have finitely many roots.) Prove that:

1. If Σ contains only constant symbols and relation symbols, then property F is axiomatisable.
2. If Σ contains at least one unary function symbol, then property F is not axiomatisable.

Problem 2.9.21 (Periodicity is not axiomatisable). Consider structures of the form $\mathfrak{A}=(A,+, s, f, 0)$, where + is a binary operation, s and f are unary functions, and 0 is a constant. The function f is periodic if there exists $k \in A, k \neq 0$, s.t. $f(x+k)=f(x)$ for every $x \in A$, and standard periodic if k is additionally of the form $k=s^{k}(0)$. Consider the classes of structures where

1. f is periodic;
2. f is standard periodic;
3. f is not standard periodic.

For each of the classes above, determine whether it is a) definable by a single sentence; b) axiomatisable by a set of sentences, but not definable by a single sentence; c) not axiomatisable by any set of sentences. [solution]
Problem 2.9.22. Let f be a unary function symbol, and consider the class of structures

$$
\mathcal{A}=\bigcup_{n \in \mathbb{N} \backslash\{0\}} \operatorname{Mod}\left(\varphi_{n}\right),
$$

where $\varphi_{n} \equiv \forall x \cdot f^{n}(x)=x$ expresses that the n-th iterate of $f f^{n}(x)=$ $\underbrace{f(\ldots f}_{n}(x) \ldots)$ is the identity function.

1. Prove that \mathcal{A} cannot be axiomatised by any set of first-order sentences.
2. Can $\operatorname{Mod}(\{f\}) \backslash \mathcal{A}$ be axiomatised by a set of first-order sentences?
3. Prove that $\operatorname{Mod}(\{f\}) \backslash \mathcal{A}$ cannot be defined with a single first-order sentence. [solution]

2.10 Skolem-Löwenheim theorems

2.10.1 Going upwards

Theorem 2.10.1 (Upward Skolem-Löwenheim theorem). If Γ is a set of sentences over a signature Σ with an infinite model, then it has a model $\mathfrak{A} \vDash \Gamma$ of every sufficiently large cardinality $\kappa=|A| \geq|\Sigma|,|\Gamma|$.

Problem 2.10.2 (Hessenberg theorem). Show that for each infinite cardinal \mathfrak{m}, we have $\mathfrak{m}^{2}=\mathfrak{m}$. Hint: Express that the cardinality of the universe is not smaller than the cardinality of its Cartesian square. Show that the sentence has an infinite model and use Theorem 2.10.1 "Upward SkolemLöwenheim theorem".
[solution]
Problem 2.10.3. Is there a set of first-order logic sentences over a finite signature, which has finite models of every even cardinality, but has no model of the continuum cardinality \mathfrak{c} ?
[solution]
Problem 2.10.4 (Infinite axiomatisability?). We want to extend Problem 2.1.8 "Characteristic sentences" to deal with countable structures over a countable signature

$$
\mathfrak{A}=\left(\left\{a_{1}, a_{2}, \ldots\right\}, R_{1}^{\mathfrak{A}}, R_{2}^{\mathfrak{A}}, \ldots\right)
$$

Is it possible to find a countable set of sentences $\Delta_{\mathfrak{A}}$ s.t., for every structure \mathfrak{B},

$$
\mathfrak{B} \vDash \Delta_{\mathfrak{A}} \quad \text { if, and only if, } \quad \mathfrak{B} \cong \mathfrak{A} ? \quad \text { [solution] }
$$

Problem 2.10.5 (Nowhere dense orders). A strict linear order $\mathfrak{A}=(A,<)$ is nowhere dense if for any two elements $x, y \in A$ with $x<y$, there are only finitely many elements $z \in A$ s.t. $x<z<y$. Show that nowhere dense linear orders cannot be axiomatised in first-order logic.
[solution]

2.10.2 Going downwards

Theorem 2.10.6 (Downward Skolem-Löwenheim theorem). If Γ is a satisfiable set of sentences over a signature Σ, then it has a model $\mathfrak{A} \vDash \Gamma$ of cardinality $\kappa=|\mathfrak{A}| \leq|\Sigma|$.

Problem 2.10.7. Let \mathcal{A} be an axiomatisable class of structures over a countable signature Σ. Show that if there is an infinite structure not in \mathcal{A}, then there is a countable structure not in \mathcal{A}.
[solution]
Problem 2.10.8. Let A be a fixed set. Consider the class \mathcal{A} of structures isomorphic to $\left(A^{\mathbb{N}}, R\right)$, where $A^{\mathbb{N}}$ is the set of all infinite sequences of elements of A and $R(x, y)$ holds if, and only if, the set of positions at which x and y differ is finite. Prove that \mathcal{A} is axiomatisable in first-order logic if, and only if, $|A|=1$.
[solution]
Problem 2.10.9. Prove that the class of all algebras $\mathfrak{A}=(A, f)$, where f is a unary function symbol, s.t. $|f(A)|<|A|$ (the cardinality of the codomain of f is strictly smaller than the cardinality of the universe), is not axiomatisable in first-order logic.
[solution]
Problem 2.10.10 (Function semigroups). Consider a signature with a binary operation \circ and a constant symbol id. A model \mathfrak{F} over this signature is called a function semigroup if its carrier is the set of all functions $f: A \rightarrow A$ on some set A, ० is function composition, and id is the identity function. Prove that the class of function semigroups cannot be axiomatised in first-order logic.
[solution]
Problem 2.10.11. Prove that the class of all structures isomorphic $\mathfrak{A}=$ $(\mathcal{P}(A), \cup, \cap, \subseteq)$, where \cup, \cap are the binary operations of union, resp., intersection, and \subseteq is the set containment relation, is not axiomatisable in first-order logic.
[solution]
We have seen in Problem 2.9.15 "Strong normalisation is not axiomatisable (via compactness)" that strong normalisation is not axiomatisable, and in Problem 2.9.16 "Well-orders are not axiomatisable" that well-orders are not axiomatisable. Since a well-order R is in particular strongly normalising (up to reversal), one may wonder whether it was necessary to prove nonaxiomatisability twice. The following exercise answer this question positively, showing that nonaxiomatisability of a class of structures is not monotonic w.r.t. subset inclusion.

Problem 2.10.12. Prove that there are three isomorphism closed classes $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C}$ of structures over the same finite signature, such that:

- \mathcal{B} is not axiomatisable even though \mathcal{A} and \mathcal{C} are.
- \mathcal{B} is axiomatisable even though \mathcal{A} and \mathcal{C} are not.
[solution]

2.11 Relating models

2.11.1 Logical relations

In this section we study preservation properties of structures.
Definition 2.11.1. Consider two over the same signature

$$
\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{m}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right) \text { and } \mathfrak{B}=\left(B, f_{1}^{\mathfrak{B}}, \ldots, f_{m}^{\mathfrak{B}}, R_{1}^{\mathfrak{B}}, \ldots, R_{n}^{\mathfrak{B}}\right)
$$

A logical relation between \mathfrak{A} and \mathfrak{B} is a relation $R \subseteq A \times B$ preserving the interpretation of function and relations: for every functional symbol f_{i} and tuples $\bar{a} \in A^{l_{i}}, \bar{b} \in B^{l_{i}}$, if $(\bar{a}, \bar{b}) \in R$, then $\left(f_{i}^{\mathfrak{A}}(\bar{a}), f_{i}^{\mathfrak{B}}(\bar{b})\right) \in R^{2}$, and for every relational symbol R_{j} and tuples $\bar{a} \in A^{k_{j}}, \bar{b} \in B^{k_{j}}$, if $(\bar{a}, \bar{b}) \in R$, then

$$
\bar{a} \in R_{j}^{\mathfrak{A}} \quad \text { implies } \quad \bar{b} \in R_{j}^{\mathfrak{B}},
$$

A logical relation R is extended on variable valuations ϱ in \mathfrak{A} and σ in \mathfrak{B} as $(\varrho, \sigma) \in R$ if, for every variable x, we have $(\varrho(x), \sigma(x)) \in R$. The logical relation R is faithful if we additionally have equivalence "iff" above. A formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is preserved by a logical relation $R \subseteq A \times B$ if $(\varrho, \sigma) \in R$ implies

$$
\begin{equation*}
\mathfrak{A}, \varrho \vDash \varphi \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash \varphi . \tag{2.4}
\end{equation*}
$$

For example, if \mathfrak{B} is an induced substructure of \mathfrak{A}, then there exists a logical relation between \mathfrak{A} and \mathfrak{B} which is injective, surjective, and faithful.

Problem 2.11.2. Show that a logical relation R preserves the meaning of terms, in the sense that, for any term t,

$$
(\varrho, \sigma) \in R \quad \text { implies } \quad\left(\llbracket t \rrbracket_{\varrho}^{\mathfrak{A}}, \llbracket t \rrbracket_{\sigma}^{\mathfrak{B}}\right) \in R .
$$

Additionally equality of terms is preserved when R is injective:

$$
\llbracket u \rrbracket_{\varrho}^{\mathfrak{A}}=\llbracket v \rrbracket_{\varrho}^{\mathfrak{A}} \quad \text { implies } \quad \llbracket u \rrbracket_{\sigma}^{\mathfrak{B}}=\llbracket v \rrbracket_{\sigma}^{\mathfrak{B}} . \quad \text { [solution] }
$$

Problem 2.11.3 (Fundamental property). Let R be a logical relation between \mathfrak{A} and \mathfrak{B}, and consider formulas without equality. Show that

[^1]| feature | formulas preserved |
| :---: | :---: |
| logical relation | positive, quantifier-free |
| faithfulness | negation " \neg " |
| totality | existential quantification " \exists " |
| surjectivity | universal quantification " $\forall "$ |
| injectivity | equality " $="$ |

Figure 2.1: Logical relations and formulas

1. All positive quantifier-free formulas are preserved.
2. If R is (left) total, then it preserves all positive existential formulas.
3. If R is total and faithful, then it preserves all existential formulas.
4. If R is surjective (right total), then it preserves all positive universal formulas.
5. If R is surjective and faithful, then it preserves all universal formulas.
6. If R is total and surjective, then it preserves all positive formulas.
7. If R is total, surjective, and faithful, then it preserves all formulas.
8. If R is injective, then it preserves formulas with equality. [solution] The relationship between logical relations and the features they preserve is summarised in Figure 2.1

Problem 2.11.4 (Preservation for $\exists^{*} \forall^{*}$-sentences). Show that for every $\exists^{n} \forall^{*}$-sentence of first-order logic φ over a signature without function symbols, if $\mathfrak{A} \vDash \varphi$, then there exists a core $C \subseteq A$ of at most n elements s.t. every induced substructure \mathfrak{B} of \mathfrak{A} containing $C \supseteq B$ is also a model $\mathfrak{B} \vDash \varphi$.
[solution]

2.11.2 Isomorphisms

Definition 2.11.5. Consider two structures $\mathfrak{A}=(A, \Sigma)$ and $\mathfrak{B}=(B, \Sigma)$ over the same signature Σ. An isomorphism between \mathfrak{A} and \mathfrak{B} is a bijection
$h: A \rightarrow B$ s.t. for every functional symbol $f_{i} \in \Sigma$ and $a_{1}, \ldots, a_{l_{i}} \in A$,

$$
h\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{l_{i}}\right)\right)=f^{\mathfrak{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{l_{i}}\right)\right),
$$

and for every relational symbol $R_{j} \in \Sigma$ and $a_{1}, \ldots, a_{k_{j}} \in A$,

$$
\left(a_{1}, \ldots, a_{k_{j}}\right) \in R_{j}^{\mathfrak{A}} \quad \text { if, and only if, } \quad\left(h\left(a_{1}\right), \ldots, h\left(a_{k_{j}}\right)\right) \in R_{j}^{\mathfrak{B}}
$$

When the above holds, we write $\mathfrak{A} \cong_{h} \mathfrak{B}$. An automorphism is an isomorphism on the same structure $\mathfrak{A} \cong_{h} \mathfrak{A}$. When there exists an isomorphism between \mathfrak{A} and \mathfrak{B}, we say that the two structures are isomorphic, written $\mathfrak{A} \cong \mathfrak{B}$.

The following problem shows that first-order logic formulas are invariant under isomorphism.
Problem 2.11.6 (Isomorphism theorem). Show that $\mathfrak{A} \cong_{h} \mathfrak{B}$ implies that, for every formula φ and for every valuation ϱ of \mathfrak{A},

$$
\mathfrak{A}, \varrho \vDash \varphi \quad \text { if, and only if } \quad \mathfrak{B}, \varrho \circ h^{-1} \vDash \varphi . \quad \text { [solution] }
$$

The isomorphism theorem implies that properties which are not invariant under automorphisms cannot be expressed or even axiomatised in first-order logic.

Problem 2.11.7. Are $(\mathbb{R},+)$ and $\left(\mathbb{R}_{+}, *\right)$ isomorphic? [solution]
Problem 2.11.8. Consider the coloured graph $\mathfrak{A}=(\mathbb{Z} \times \mathbb{Z}, E, U)$, where the edge relation E is defined as

$$
\left(x, y, x^{\prime}, y^{\prime}\right) \in E \operatorname{iff}\left(x=x^{\prime} \text { and }\left|y-y^{\prime}\right|=1\right) \text { or }\left(\left|x-x^{\prime}\right|=1 \text { and } y=y^{\prime}\right)
$$

and $U \subseteq \mathbb{Z} \times \mathbb{Z}$ is a unary relation. Is it possible to define in first-order logic that U is a union of complete columns?
[solution]
Problem 2.11.9. Construct a set Δ of first-order sentences s.t. every two countable models thereof are isomorphic (i.e., Δ is \aleph_{0}-categorical), but there exist two uncountable nonisomorphic models of Δ of the same cardinality (i.e., Δ is not κ-categorical for some $\kappa>\aleph_{0}$).
[solution]

2.11.3 Elementary equivalence

Definition 2.11.10. Fix a signature Σ and consider two structures $\mathfrak{A}, \mathfrak{B}$ over Σ. For $m \in \mathbb{N}$, we write $\mathfrak{A} \equiv_{m} \mathfrak{B}$ if \mathfrak{A} and \mathfrak{B} satisfy the same first-order sentences of rank $\leq m$. If this holds for every m, then we say that \mathfrak{A} and \mathfrak{B} are elementary equivalent, written $\mathfrak{A} \equiv \mathfrak{B}$.

Problem 2.11.11. Show that isomorphic structures are elementary equivalent: $\mathfrak{A} \cong \mathfrak{B}$ implies $\mathfrak{A} \equiv \mathfrak{B}$.
[solution]
Problem 2.11.12. Is it the case that $(\mathbb{R},+, *) \equiv(\mathbb{Q},+, *)$? [solution]

2.12 Ehrenfeucht-Fraïssé games

Definition 2.12.1. Let $k \in \mathbb{N}$ be a parameter and consider two structures \mathfrak{A} and \mathfrak{B} over the same signature Σ. The Ehrenfeucht-Fraïssé game $G_{k}(\mathfrak{A}, \mathfrak{B})$ of length k is defined as follows. At every round $1 \leq i \leq k$, either
(1) Player I selects $a_{i} \in \mathfrak{A}$,
(1) Player I selects $b_{i} \in \mathfrak{B}$,
(2) Player II selects $b_{i} \in \mathfrak{B}$,
(2) Player II selects $a_{i} \in \mathfrak{A}$.

At the end of the game, the two players have produced two sets $X=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ and $Y=\left\{b_{1}, \ldots, b_{k}\right\}$, and Player II wins if $\left.\left.\mathfrak{A}\right|_{X} \cong_{h} \mathfrak{B}\right|_{Y}$ for the partial isomorphism $h\left(a_{1}\right)=b_{1}, \ldots, h\left(a_{k}\right)=b_{k}$.
Theorem 2.12.2 (Finite EF-games). Fix a signature Σ and two structures \mathfrak{A} and \mathfrak{B} over Σ. For every $k \in \mathbb{N}$,

Player II wins $G_{k}(\mathfrak{A}, \mathfrak{B}) \quad$ if, and only if, $\quad \mathfrak{A} \equiv_{k} \mathfrak{B}$.

2.12.1 Equivalent structures

Problem 2.12.3. Is it the case that

$$
(\mathbb{Q},<) \equiv(\mathbb{R},<) ?
$$

Are the two structures above isomorphic?
Problem 2.12.4. Prove that the structures $(\mathbb{Q} \times \mathbb{Z}, \leq)$ and $(\mathbb{R} \times \mathbb{Z}, \leq)$, ordered lexicographically using the natural orders on \mathbb{Z}, \mathbb{Q}, and \mathbb{R}, are elementary equivalent.
[solution]
Problem 2.12.5. Consider a finite directed cycle \mathfrak{A}_{n} of size 2^{n} (number of vertices) and a path infinite in both directions \mathfrak{B}. From a trivial counting argument, \mathfrak{A}_{n} and \mathfrak{B} can be distinguished by a sentence of rank $2^{n}+1$ using only the equality symbol (c.f. Problem 2.1.6 "Cardinality constraints I "). However, if we additionally allow the edge relation " E " sentences of smaller rank suffice. What is the smallest k s.t. Player I wins $G_{k}\left(\mathfrak{A}_{n}, \mathfrak{B}\right)$? [solution]
Problem 2.12.6. Show that the following two structures cannot be distinguished by any sentence of first-order logic:

$$
\begin{aligned}
\mathfrak{A} & =(\mathbb{N}, \leq), \text { and } \\
\mathfrak{B} & =\left(\left\{\left.1-\frac{1}{n} \right\rvert\, n>0\right\} \cup\left\{\left.1+\frac{1}{n} \right\rvert\, n>0\right\} \cup\left\{\left.3-\frac{1}{n} \right\rvert\, n>0\right\}, \leq\right) . \quad \text { [solution] }
\end{aligned}
$$

Problem 2.12.7. Assume that Player II has a winning strategy in $G_{4}(\mathfrak{A}, \mathfrak{B})$, where \mathfrak{A} is shown in the picture and \mathfrak{B} is an unspecified undirected graph with n vertices. How many edges can \mathfrak{B} have?
[solution]
Problem 2.12.8. Consider the graph \mathfrak{G} in the figure. Prove that any graph \mathfrak{H} s.t. $\mathfrak{H} \equiv_{3} \mathfrak{G}$ has an odd number of ≥ 3 vertices. [solution]
Problem 2.12.9. For a partial order $\mathfrak{A}=(A, \leq)$, let $\widetilde{\mathfrak{A}}=(\widetilde{A}, \widetilde{\leq})$ be obtained from \mathfrak{A} by adding a new largest and smallest element $\widetilde{A}=A \cup\{\perp, \top\}$.

1. Let \mathfrak{A} and \mathfrak{B} be two partial orders. Prove that

$$
\mathfrak{A} \equiv_{n} \mathfrak{B} \quad \text { implies } \quad \widetilde{\mathfrak{A}} \equiv_{n} \widetilde{\mathfrak{B}} .
$$

2. What about the converse implication? [solution]

2.12.2 Distinguishing sentences

Problem 2.12.10 (Distinguishing chains). Let the signature consist of a single binary relation $\Sigma=\{E\}$, and let \mathfrak{A} and \mathfrak{B} be two directed paths of length 1, resp., 2 (cf. figure). Show that Player I wins $G_{k}\left(\mathfrak{A}_{1}, \mathfrak{B}_{1}\right)$ with $k=2$ and construct the distinguishing formula corresponding to her winning strategy.
[solution]
Problem 2.12.11 (The hypercube). Let $\mathfrak{H}_{n}=\left(\{0,1\}^{n}, E\right)$ be the hypercube graph, i.e., $E(x, y)$ holds iff $x, y \in\{0,1\}^{n}$ differ on exactly one position. Find two sentences of smallest quantifier rank distinguishing:

- \mathfrak{H}_{4} and \mathfrak{H}_{3};
- \mathfrak{H}_{3} and \mathfrak{H}_{3}^{-}, where the latter graph is obtained by removing one edge from \mathfrak{H}_{3}.
[solution]

2.12.3 Infinite EF-games

Let the infinite EF-game $G_{\infty}(\mathfrak{A}, \mathfrak{B})$ be played for a countable number of rounds. The following problem shows that countable EF-games capture isomorphism of countable structures.

Problem 2.12.12 (Countable EF-games). Fix a signature Σ and two countable structures \mathfrak{A} and \mathfrak{B} over Σ.

$$
\text { Player II wins } G_{\infty}(\mathfrak{A}, \mathfrak{B}) \quad \text { if, and only if, } \mathfrak{A} \cong \mathfrak{B} . \quad \text { [solution] }
$$

Problem 2.12.13. Construct two structures \mathfrak{A} and \mathfrak{B} s.t. Player II wins $G_{m}(\mathfrak{A}, \mathfrak{B})$ for every finite number of rounds $m \in \mathbb{N}$ but loses the infinite game $G_{\infty}(\mathfrak{A}, \mathfrak{B})$.
[solution]

2.12.4 No equality

We are interested in constructing distinguishing formulas not using equality, as motivated by the following simple problem.

Problem 2.12.14. Find two structures $\mathfrak{A}, \mathfrak{B}$ which can be distinguished by a sentence using equality, but cannot be distinguished by any sentence not using equality.
[solution]
Definition 2.12.15. Let $\mathfrak{A}, \mathfrak{B}$ be two relational structures over the common signature Σ. An $\mathfrak{A}, \mathfrak{B}$-invariant is a relation $\sim \subseteq A \times \mathcal{B}$ s.t. for every k-ary relation $R \in \Sigma$ and elements $a_{1} \sim b_{1}, \ldots, a_{k} \sim b_{k}$,

$$
\left(a_{1}, \ldots, a_{k}\right) \in R^{\mathfrak{A}} \quad \text { if, and only if, } \quad\left(b_{1}, \ldots, b_{k}\right) \in R^{\mathfrak{B}}
$$

Definition 2.12.16. Consider the following modified Ehrenfeucht-Fraïssé game $H_{k}(\mathfrak{A}, \mathfrak{B})$: Assume that at the end of the play the two players have constructed two sequences $a_{1}, \ldots, a_{k} \in A$ and $b_{1}, \ldots, b_{k} \in B$ (possibly containing duplicate elements). Then Player II wins if $\sim=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\}$ is a $\mathfrak{A}, \mathfrak{B}$-invariant.

Theorem 2.12.17. Player I wins $H_{k}(\mathfrak{A}, \mathfrak{B})$ if, and only if, there exists a sentence of rank k not using equality distinguishing \mathfrak{A} from \mathfrak{B}.

The following exercise has been proposed by Szymon Torunczyk.
Problem 2.12.18. Let $\mathfrak{A}, \mathfrak{B}$ be two relational structures over a common signature Σ. Propose a modification \mathfrak{A}^{\prime} of \mathfrak{A} and \mathfrak{B}^{\prime} of \mathfrak{B} s.t. Player I wins $H_{k}(\mathfrak{A}, \mathfrak{B})$ if, and only if, she wins $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$. [solution]

2.12.5 One-sided EF-games

Definition 2.12.19. In the one-sided Ehrenfeucht-Fraïssé game of k rounds $G_{k}^{\text {one }}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$, Player I, after selecting in the first round an element from \mathfrak{A}_{i} with $i \in\{0,1\}$, must select elements of the same \mathfrak{A}_{i} in all the subsequent rounds.

Problem 2.12.20. Show that Player I wins the standard game $G_{4}(\mathfrak{A}, \mathfrak{B})$, with $\mathfrak{A}, \mathfrak{B}$ as in the picture. Is there a winning strategy for Player I in the one-sided variant $G_{4}^{\text {one }}(\mathfrak{A}, \mathfrak{B})$? [solution]

Problem 2.12.21. Give an example of two structures $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ s.t. Player II wins $G_{k}^{\text {one }}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$ for every $k \in \mathbb{N}$, even though she loses the standard game $G_{m}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$ for some m. What is the smallest such m ? [solution]

2.12.6 Inexpressibility

Compactness is a standard tool to show non-axiomatisability of classes of arbitrary structures, as we have seen in Section 2.9.1. However, compactness fails over finite structures (c.f. Problem 2.9.3 "Compactness in finite structures?"). While any class of finite structures is axiomatisable (c.f. Problem 2.7.2 "Classes of finite structures are axiomatisable"), they need not be expressible by a single sentence of first-order logic. EF-games can be used to show inexpressibility results over classes of finite (and infinite) structures: In order to prove that a class of structures \mathcal{A} cannot be defined by a single sentence, it suffices to construct two sequences of structures $\mathfrak{A}_{1}, \mathfrak{A}_{2}, \cdots \in \mathcal{A}$ and $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \cdots \notin \mathcal{A}$ s.t., for every $m \in \mathbb{N}, \mathfrak{A}_{m} \equiv_{m} \mathfrak{B}_{m}$.

Problem 2.12.22 (Eulerian cycles are not definable). An Eulerian cycle in a simple graph is a cycle visiting every edge exactly once. Prove that the existence of an Eulerian cycle in finite simple graphs is not definable by a sentence of first-order logic.
[solution]
Problem 2.12.23 (Planarity is not definable (via EF-games)). A simple graph is planar if it can be drawn on the plane without crossing edges. Prove that the class of graphs in which each finite subgraph is planar is not definable.

Problem 2.12.24 (Hanf). Consider the cylinder \mathfrak{C}_{n} and the Möbius \mathfrak{M}_{n} graph shown in the figure, both with $2 \cdot n$ vertices. Is there a single first-order
sentence φ distinguishing \mathfrak{C}_{n} from \mathfrak{M}_{n} for every $n \in \mathbb{N}$? \quad [solution]

2.12.7 Complexity

Problem 2.12.25 (Solving EF-games in PSPACE). Show that the following problem can be solved in PSPACE.
The EF-GAME Problem.
Input: Two structures \mathfrak{A} and \mathfrak{B} over a common vocabulary Σ and $k \in \mathbb{N}$.
Output: YES iff Player II wins $G_{k}(\mathfrak{A}, \mathfrak{B})$. [solution]
The complexity upper bound provided by the previous exercise is in fact optimal since solving EF-games is PSPACE-hard [23].
Problem 2.12.26 (Fixed-length EF-games). Fix a number of rounds $k \in \mathbb{N}$. Show that the following problem can be solved in LOGSPACE:
Fixed-length EF-GAME.
Input: Two structures \mathfrak{A} and \mathfrak{B} over a common vocabulary Σ.
Output: YES iff Player II wins $G_{k}(\mathfrak{A}, \mathfrak{B})$. [solution]

2.12.8 Complete theories

Definition 2.12.27. A theory over signature Σ is any set of sentences Γ which is closed under logical entailment, in the sense that $\Gamma \vDash \varphi$ implies $\varphi \in \Gamma$. A set of sentences Γ is complete if, for every first-order formula φ over Σ, either $\Gamma \vDash \varphi$ or $\Gamma \vDash \neg \varphi$; if Γ is a theory, the latter condition is equivalent to: $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$. Given a set of formulas Γ over a given signature Σ, the set of logical consequences of Γ is the theory

$$
\operatorname{Th}(\Gamma)=\{\varphi \mid \Gamma \vDash \varphi\}
$$

The set of all valid first-order formulas of a given signature $\operatorname{Th}(\Sigma)$ is a complete theory (i.e., when $\Gamma=\varnothing$). The theory of a structure \mathfrak{A} is the set of sentences that it satisfies, denoted by $\operatorname{Th}(\mathfrak{A})=\{\varphi \mid \mathfrak{A} \vDash \varphi\}$, and it is thus a complete theory.

By Theorem 2.10.1 "Upward Skolem-Löwenheim theorem", there is no hope for models of a theory Γ to be isomorphic to each other (by a trivial cardinality argument). The situation changes when we look at models of fixed cardinality.

Definition 2.12.28. A theory Γ is κ-categorical if any two models of cardinality κ thereof are isomorphic.

Problem 2.12.29 (Łoś-Vaught test). Let κ be an inifinite cardinality. Show that every set of sentences Γ over a signature Σ of cardinality $|\Sigma| \leq$ κ, which has no finite models and is κ-categorical, must be complete. [solution]
Problem 2.12.30 (Theory completeness and decidability). A theory Γ is recursive if it is decidable whether $\varphi \in \Gamma$ (membership), and decidable if it is decidable whether $\Gamma \vDash \varphi$ (logical consequence). Show that a complete recursive theory over a finite signature Σ is decidable.
[solution]
Problem 2.12.31. How many complete theories over a finite signature can exist? Find a finite signature Σ s.t. there are continuum-many complete theories over Σ.
[solution]

2.13 Interpolation

Definition 2.13.1. An preinterpolant of two first-order formulas φ, ψ satisfying $\vDash \varphi \rightarrow \psi$ is a formula ξ s.t. $\vDash \varphi \rightarrow \xi$ and $\vDash \xi \rightarrow \psi, F V(\xi)=$ $F V(\varphi) \cap F V(\psi)$, and ξ contains only relation symbols occurring in both φ and ψ, and an interpolant satisfies the further property that it contains only function symbols occurring in both φ and ψ.

The purpose of this section is to show the existence of interpolants for first-order logic.

2.13.1 No equality

In this section we show how to construct interpolants for formulas not using the equality symbol "=".

Problem 2.13.2 (Interpolation for quantifier-free ground formulas). Assume that $\vDash \varphi \rightarrow \psi$, where φ, ψ are quantifier-free, ground, and do not contain the equality symbol "=". Construct a quantifier-free ground formula ξ interpolating φ, ψ.
[solution]
Problem 2.13.3 (Preinterpolation for \forall / \exists sentences). Assume

$$
\vDash(\forall \bar{x} \cdot \varphi) \rightarrow \exists \bar{y} \cdot \psi,
$$

with φ, ψ quantifier-free, not containing the equality symbol " $=$ ". Show how to construct a quantifier-free ground preinterpolant ξ for the two sentences above. Hint: Use Problem 2.5.3 and Problem 2.13.2 "Interpolation for quantifier-free ground formulas".
[solution]
Problem 2.13.4 (Interpolation for \forall / \exists sentences). Show how to transform a quantifier-free ground preinterpolant ξ,

$$
\vDash \forall \bar{x} \cdot \varphi \rightarrow \xi \quad \text { and } \quad \vDash \xi \rightarrow \exists \bar{y} \cdot \psi
$$

into a ground interpolant (i.e., a sentence).
Problem 2.13.5 (Interpolation for sentences). Let $\vDash \varphi \rightarrow \psi$, where φ, ψ are two sentences not containing the equality symbol. Show that there exists a sentence ξ interpolating φ, ψ. Hint: Use Problem 2.4.3"Herbrandisation" and Problem 2.13.4 "Interpolation for \forall / \exists sentences". [solution]

Problem 2.13.6 (Interpolation for formulas without equality). Let \vDash $\varphi \rightarrow \psi$, where φ, ψ are two formulas (possibly containing free variables) not containing the equality symbol. Show that there exists a formula interpolating φ, ψ. Hint: Use Problem 2.13.5 "Interpolation for sentences".
[solution]

2.13.2 Extensions

Problem 2.13.7 (Interpolation with equality). Let $\vDash \varphi \rightarrow \psi$, where φ, ψ are two formulas possibly containing the equality relation. Show that there exists an interpolant thereof. Hint: Use Problem 2.13.6 "Interpolation for formulas without equality".
[solution]
Problem 2.13.8. Let Γ be a set of formulas and ψ a formula of first-order logic and s.t. $\Gamma \vDash \psi$. Show that there exists a formula ξ over the common signature and common free variables of $\Gamma \cup\{\psi\}$ s.t. $\Gamma \vDash \xi$ and $\xi \vDash \psi$. Hint: Apply Problem 2.9.1 "Compactess theorem" and Problem 2.13.7 "Interpolation with equality".
[solution]
Problem 2.13.9 (No interpolation for finite structures). Prove that the interpolation theorem fails for first-order logic over finite structures: Construct two sentences φ, ψ s.t.

- $\varphi \rightarrow \psi$ holds in all finite structures, and
- there is no ξ containing only relation and/or function symbols occurring in both φ and ψ s.t. $\varphi \rightarrow \xi$ and $\xi \rightarrow \psi$ holds in all finite structures.

Hint: Use Problem 2.8.18 "Spectra with only unary relations". [solution]

2.13.3 Applications of interpolation

Problem 2.13.10 (Separability of universal formulas). If two universal formulas φ, ψ over a relational signature without equality are jointly unsatisfiable $\vDash \varphi \wedge \psi \rightarrow \perp$, then they can be separated by a quantifier-free formula $\xi: \vDash \varphi \rightarrow \xi$ and $\vDash \xi \wedge \psi \rightarrow \perp$. [solution]
Theorem 2.13.11 (Lyndon's interpolation theorem). If $\vDash \varphi \rightarrow \psi$, then there exists an interpolant ξ of φ, ψ s.t. every relation used in ξ positively is also used positively in φ, ψ, and similarly for negative uses.

A homomorphism is a total functional logical relation.
Problem 2.13.12 (Lyndon's theorem). Show that a formula of first-order logic is preserved under surjective homomorphisms if, and only if, it is equivalent to a positive formula. Hint: Express preservation under surjective homomorphisms as a first-order formula and apply Theorem 2.13.11 "Lyndon's interpolation theorem".
[solution]
Problem 2.13.13 (Łoś-Tarski's theorem). Show that a sentence is preserved under induced substructures if, and only if, it is equivalent to a universal sentence. ${ }^{3}$
[solution]
Problem 2.13.14 (Robinson's joint consistency theorem). Show that, if Γ, Δ are satisfiable sets of sentences but $\Gamma \cup \Delta$ is not satisfiable, then there exists a sentence ξ over the shared variables and vocabulary s.t. $\Gamma \vDash$ ξ and $\Delta \vDash \neg \xi$. Hint: Apply Problem 2.9.1 "Compactess theorem" and Problem 2.13.7 "Interpolation with equality".
[solution]

[^2]
2.14 Relational algebra

In this section we investigate the connection between first-order logic and relational algebra, which is a formalism without variables. Let $\Sigma=$ $\left\{R_{1}, R_{2}, \ldots\right\}$ be a relational signature, where R_{i} has arity k_{i}. Let $A=$ $\left\{a_{1}, a_{2}, \ldots\right\}$ be the domain. Expressions of relational algebra are generated by the following abstract syntax:

$$
E, F::=\left(a_{1}, \ldots, a_{k}\right)\left|R_{i}\right| E+F|E-F| E \times F\left|\sigma_{i=j}(E)\right| \pi_{i_{1}, \ldots, i_{k}}(E)
$$

The dimension of an expression of relational algebra E is defined inductively as follows:

- $\left(a_{1}, \ldots, a_{k}\right)$ has dimension k;
- R_{i} has dimension k_{i};
- if E, F have the same dimension k, then also $E+F, E-F$, and $\sigma_{i=j}(E)$ (when $i, j \in\{1, \ldots, k\}$) have dimension k.
- if E has dimension k and F has dimension l, then $E \times F$ has dimension $k+l$;
- if E has dimension k then $\pi_{i_{1}, \ldots, i_{l}}(E)$ has dimension l whenever $1 \leq i_{j} \leq k$ for every $1 \leq j \leq l$.

An expression is well-formed if it has a dimension (which is unique in this case). In the following, we assume that expressions are well-formed. The semantics $\llbracket E \rrbracket_{\mathfrak{A}}$ of relational algebra expression E in a relational structure $\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, R_{2}^{\mathfrak{A}}, \ldots\right)$ is:

$$
\begin{aligned}
\llbracket\left(a_{1}, \ldots, a_{k}\right) \rrbracket_{\mathfrak{A}} & =\left\{\left(a_{1}, \ldots, a_{k}\right)\right\}, \\
\llbracket R_{i} \rrbracket_{\mathfrak{A}} & =R_{i}^{\mathfrak{A}} \\
\llbracket E+F \rrbracket_{\mathfrak{A}} & =\llbracket E \rrbracket_{\mathfrak{A}} \cup \llbracket F \rrbracket_{\mathfrak{A}}, \\
\llbracket E-F \rrbracket_{\mathfrak{A}} & =\llbracket E \rrbracket_{\mathfrak{A}} \backslash \llbracket F \rrbracket_{\mathfrak{A}}, \\
\llbracket E \times F \rrbracket_{\mathfrak{A}} & =\llbracket E \rrbracket_{\mathfrak{A}} \times \llbracket F \rrbracket_{\mathfrak{A}}, \\
\llbracket \sigma_{i=j}(E) \rrbracket_{\mathfrak{A}} & =\left\{\left(a_{1}, \ldots, a_{k}\right) \in \llbracket E \rrbracket_{\mathfrak{A}} \mid a_{i}=a_{j}\right\}, \\
\llbracket \pi_{i_{1}, \ldots, i_{k}}(E) \rrbracket_{\mathfrak{A}} & =\left\{\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \mid\left(a_{1}, \ldots, a_{k}\right) \in \llbracket E \rrbracket_{\mathfrak{A}}\right\} .
\end{aligned}
$$

Problem 2.14.1. Show how to express intersection $E \& F$ in terms of the primitives above.
[solution]
Since the semantics of relational algebra is given in a first-order language, it is not surprising that one can transform an expression into an equivalent first-order logic formula.

Problem 2.14.2. Show that given any relational algebra expression E of dimension k one can write an equivalent formula of first-order logic $\varphi_{E}\left(x_{1}, \ldots, x_{k}\right)$ with k free variables. Hint: Proceed by structural induction on expressions.
[solution]
What is perhaps more surprising is that in fact every formula of firstorder logic on a relational signature arise in this way (up to logical equivalence).

Problem 2.14.3. Show that given a formula of first-order logic with equality $\varphi\left(x_{1}, \ldots, x_{k}\right)$ with k free variables and any dimension $n \geq k$, one can write an equivalent expression of relational algebra $E_{\varphi, n}$ of dimension n. Hint: Proceed by structural induction preserving the invariant

$$
\llbracket E_{\varphi, n} \rrbracket=\left\{\bar{a} \in A^{n} \mid \mathfrak{A}, \bar{x}: \bar{a} \vDash \varphi\right\} . \quad \text { [solution] }
$$

Note. The two translations in Problems 2.14.2 and 2.14 .3 prove the equivalence of first-order logic with equality on relational structures and relational algebra, which is a seminal result due to Codd [7].

Chapter 3

Second-order predicate logic

Second-order logic is an extension of first-order logic with variables R denoting relations which can be quantified over:

$$
\varphi, \psi:: \equiv \top\left|R\left(t_{1}, \ldots, t_{k_{j}}\right)\right| t_{1}=t_{2}|\varphi \wedge \psi| \neg \varphi|\exists x . \varphi| \exists R . \varphi .
$$

A formula of second-order logic is existential if it is of the form $\exists R_{1}, \ldots, R_{n} \cdot \varphi$, with φ first-order, and similarly for universal formulas, and it is monadic if all second-order quantifiers range over unary (monadic) predicates.

3.1 Expressiveness

Problem 3.1.1 (Finiteness). Write a sentence of universal second-order logic which is satisfied precisely in finite models. Can this be done in $\forall \mathrm{MSO}$?
[solution]
Problem 3.1.2 (Countability). Write a sentence of second-order logic which is satisfied precisely in countable models.
[solution]
Problem 3.1.3 (Spectrum). Show that spectra of second-order logic are closed under complement. (The analogous statement for first-order spectra is a long-standing open problem.)
[solution]
Problem 3.1.4. Construct a sentence of MSO whose spectrum is the set of prime numbers.
[solution]

3.1.1 Directed graphs

Problem 3.1.5 (Reachability for directed graphs). Consider a directed graph (V, E) with edge relation $E \subseteq V \times V$. Write a universal formula of second-order logic expressing the reflexive-transitive closure E^{*} of E. Is it possible to express it with a monadic formula? And with an existential one (possibly non-monadic)?
[solution]
Problem 3.1.6 (Connectivity for directed graphs). A finite directed graph (V, E) is strongly connected if every two vertices are connected by a directed path. Show how to express strong connectivity in $\forall M S O$ and $\exists S O$.
[solution]
The situation on whether reachability and connectivity are expressible in SO and its variants on directed graphs is summarised in Figure 3.1.

Problem 3.1.7 (Eulerian cycles in $\exists \mathrm{SO}$). Express the existence of a Eulerian cycle (c.f. Problem 2.12.22 "Eulerian cycles are not definable") in \exists SO. Is it possible to write a universal sentence as well?
[solution]
Problem 3.1.8 (Hamiltonian cycles in $\exists \mathrm{SO}$). A Hamiltonian cycle in a finite directed graph is a path that visits each node exactly once.

directed graphs	reachability	connectivity
$\forall \mathrm{MSO}$	$\checkmark(3.1 .5)$	$\checkmark(3.1 .6)$
\exists SO	$\checkmark(3.1 .5)$	$\checkmark(3.1 .6)$
$\exists \mathrm{MSO}$	no	no [14]

Figure 3.1: Expressing reachability/connectivity in directed graphs.

1. Show that the existence of a Hamiltonian cycle in finite directed graphs can be expressed in $\exists \mathrm{SO}$.
2. Show that the existence of an analogous formula in $\forall \mathrm{SO}$ would imply NPTIME $=$ coNPTIME.
[solution]
Problem 3.1.9. Show that $\exists \mathrm{MSO}$ can already define some NPTIMEcomplete problem. Hint: Express 3-colourability in $\exists M S O$. [solution]

Problem 3.1.10 (The Church-Rosser property is MSO definable). We have seen in Problem 2.9.14 "The Church-Rosser property is not axiomatisable (via compactness)" that the Church-Rosser property is not axiomatisable in first-order logic. Show that it can be defined in $\forall \mathrm{MSO}$. [solution]

Problem 3.1.11 (Strong normalisation is MSO definable). We have seen in Problem 2.9.15 "Strong normalisation is not axiomatisable (via compactness)" that strong normalisation of a binary relation $E \subseteq A \times A$ (i.e., well-foundedness of $\left.\left(E^{*}\right)^{-1}\right)$ is not axiomatisable in first-order logic. Show that it is definable in $\forall M S O$.
[solution]

3.1.2 Simple graphs

(*) Problem 3.1.12 (Reachability for simple graphs). Consider simple (i.e., undirected, without self-loops) finite graphs (V, E). Find an \exists MSO formula expressing the transitive closure E^{*}. Is this possible for directed graphs? [solution]

Problem 3.1.13 (Connectivity for simple graphs). Write a sentence $\varphi_{\text {conn }}$ of MSO expressing that a simple graph is connected. Is it possible to express it in $\exists \mathrm{MSO}$?
[solution]

simple graphs	reachability	connectivity
\forall MSO	\checkmark	\checkmark
\exists SO	\checkmark	$\checkmark(3.1 .13)$
ヨMSO	$\checkmark(!, 3.1 .12)$	no (3.1.13)

Figure 3.2: Expressing reachability/connectivity in simple graphs.

The situation on whether reachability and connectivity are expressible in SO and its variants on simple graphs is summarised in Figure 3.2.

Problem 3.1.14 (Graph minors in MSO). A graph G is a minor of a graph H if it can be obtained from the latter by contracting edges and removing edges and nodes. Let G be a fixed finite simple graph. Write a closed MSO formula φ_{G} s.t., for every simple graph $H, H \vDash \varphi_{G}$ holds if, and only if, H contains G as a minor.
[solution]
Problem 3.1.15 (Planarity of finite simple graphs in MSO). Express planarity of finite simple graphs (c.f. Problem 2.12.23 "Planarity is not definable (via EF-games)") in MSO.
[solution]

3.1.3 MSO on trees

Problem 3.1.16. Consider the tree structure $\mathfrak{T}=(T, L, R, U)$, where the domain is the set of nodes $T=\{0,1\}^{*}, L, R$ are binary relations encoding the left, resp., right child $(L(w, w 0)$ and $R(w, w 1)$ hold for every $w \in T)$, and $U \subseteq T$ is an unspecified set of nodes. Express in MSO the existence of a path in T containing infinitely many elements of U.
[solution]

3.1.4 MSO on free monoids

Problem 3.1.17. Consider the free monoid of words over $\{a, b\}$

$$
\mathfrak{A}=\left(\{a, b\}^{*}, \cdot, a, b, \varepsilon\right)
$$

with additional constants a, b for one-letter words. Prove that for every regular language $L \subseteq\{a, b\}^{*}$ there is a MSO formula $\varphi(x)$ with one free
first-order variable s.t.

$$
L=\left\{w \in\{a, b\}^{*} \mid \mathfrak{A}, x: w \vDash \varphi\right\} .
$$

[solution]
Problem 3.1.18. Find a formula of first-order logic over the free monoid defining a non-regular language over $\Sigma=\{a, b\}$.
[solution]
Problem 3.1.19. Show that every context-free language is MSO definable over the free monoid.
[solution]

3.2 Failures

The theme of this section is that many properties of first-order logic fail for second-order logic, and this happens already for its universal fragment. On the other hand, the existential fragment behaves much like first-order logic.

Problem 3.2.1 (Compactness fails for $\forall S O$). Show that the compactness theorem fails for the universal fragment of second-order logic. What about its existential fragment?
[solution]
Problem 3.2.2 (Skolem-Löwenheim and SO). 1. Prove that the SkolemLöwenheim theorem does not hold for second-order logic.
2. Show that the Skolem-Löwenheim theorem does not hold for existential second-order logic.
3. Show that the Skolem-Löwenheim theorem does holds for universal second-order logic over the empty signature.
4. What happens in the case of universal second-order logic when the signature is not empty? Hint: A non-empty signature provides additional prenex existential second-order quantifiers.
[solution]

3.3 Word models

Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite alphabet.
Definition 3.3.1. Every finite nonempty word $w=w_{0} \cdots w_{k-1} \in \Sigma^{+}$induces a relational structure \mathfrak{A}_{w}, called (finite) word model,

$$
\mathfrak{A}_{w}=\left(\{0, \ldots, k-1\}, \leq, P_{a_{1}}, \ldots, P_{a_{n}}\right),
$$

where the domain is the set of the natural numbers indexing the positions in w, the total order on positions \leq is as on \mathbb{N}, and we have n unary predicates $P_{a_{1}}, \ldots, P_{a_{n}}$ s.t. $P_{a_{i}}(x)$ holds iff $w_{x}=a_{i}$. We can associate to an MSO sentence φ over the signature $\left\{\leq, P_{a_{1}}, \ldots, P_{a_{n}}\right\}$ the set of finite word models it satisfies $\llbracket \varphi \rrbracket=\left\{w \in \Sigma^{+} \mid \mathfrak{A}_{w} \vDash \varphi\right\}$. A language of finite nonempty words $L \subseteq \Sigma^{+}$is MSO-definable if there exists an MSO formula φ s.t. $L=\llbracket \varphi \rrbracket$.

Another way to describe languages, perhaps more familiar, is provided by automata.

Definition 3.3.2. A finite nondeterministic automaton (NFA) over Σ is a tuple $A=(Q, I, F,\{\xrightarrow{a} \subseteq Q \times Q \mid a \in \Sigma\})$ where Q is a finite set of states, $I, F \subseteq Q$ are those states which are initial, resp., final, and \rightarrow is a labelled transition relation on states. We extend \rightarrow on finite words Σ^{*} inductively, by writing $q \xrightarrow{\varepsilon} q$ for every $q \in Q$, and $q \xrightarrow{w \cdot a} q^{\prime}$ whenever there exists $q^{\prime \prime} \in Q$ s.t. $q \xrightarrow{w} q^{\prime \prime} \xrightarrow{a} q^{\prime}$. The language recognised by a state $q \in Q$ is $\llbracket q \rrbracket=\left\{w \in \Sigma^{*} \mid \exists q^{\prime} \in F \cdot q \xrightarrow{w} q^{\prime}\right\}$, and $\llbracket Q \rrbracket=\bigcup_{q \in I} \llbracket q \rrbracket$. A language is finite-state if it can be recognised by a finite NFA.

We will prove the following celebrated result connecting automata theory with logic (c.f. Problems 3.3.3 and 3.3.8)

Theorem (Büchi [5], Elgot [11], and Trakhtenbrot [30]). MSO-definable and finite-state languages coincide.

We begin with the easier direction of the theorem.
Problem 3.3.3. Show that, for every NFA A one can effectively find an MSO sentence φ s.t. $L(A)=\llbracket \varphi \rrbracket$.

Problem 3.3.4. Show that one can improve Problem 3.3.3 and produce an $\exists \mathrm{MSO}$ sentence with a single second-order quantifier.
[solution]

Problem 3.3.5 (Star-free regular languages in first-order logic). Let Σ be a finite alphabet. A star-free regular expression over Σ is generated by the following grammar:

$$
e, f::=a\left|\Sigma^{*}\right| e \cup f|e \cdot f| \Sigma \backslash e,
$$

where $a \in \Sigma$ and $\Sigma \backslash\left(_\right)$denotes the complementation operation. Show that star-free regular languages are definable in first-order logic over word models. Hint: Construct the formula inductively over the structure of the expression. For this to go through, use formulas $\varphi_{e}(x, y)$ of two free variables x, y defining the language of words:

$$
\llbracket \varphi(x, y) \rrbracket=\left\{a_{i} \cdots a_{j-1} \in \Sigma^{*} \mid \mathcal{A}_{a_{1} \ldots a_{n}}, x: i, y: j \vDash \varphi(x, y)\right\} . \quad \text { [solution] }
$$

Problem 3.3.6. Show how to simulate first-order variables with MSO variables over word-models modulo the introduction of few new atomic formulas. Hint: Interpret a first-order variable x as a second-order one representing the singleton $\{x\}$.
[solution]
In order to prove the more challenging direction of the theorem, we need to define the semantics in terms of word-models not just for MSO sentences, but for MSO formulas (i.e., potentially with free variables). Since first-order variables can be simulated by second-order ones, we only consider second-order variables.

Definition 3.3.7. Let $\varphi\left(X_{1}, \ldots, X_{k}\right)$ be an MSO formula with k free variables X_{1}, \ldots, X_{k}. We extend the alphabet to $\Sigma_{k}=\Sigma \times\{0,1\}^{k}$ in such a way that a letter $\left(a, b_{1}, \ldots, b_{k}\right) \in \Sigma_{k}$ in the new alphabet encodes an additional bit-vector $b_{1} \cdots b_{k}$ s.t. $b_{i}=1$ at position x iff $X_{i}(x)$ holds.

Problem 3.3.8. Show that every MSO formula $\varphi\left(X_{1}, \ldots, X_{k}\right)$ with k free MSO variables X_{1}, \ldots, X_{k} can be converted to an NFA A over Σ_{k} s.t. $\llbracket \varphi\left(X_{1}, \ldots, X_{k}\right) \rrbracket=\llbracket A \rrbracket$. Hint: Proceed by structural induction on φ. [solution]

From Problem 3.3.3 we can see that one can convert an NFA into an equivalent MSO formula of size linear in the size of the automaton. The next problem can be used to estimate the complexity of the converse translation provided by Problem 3.3.8.

Problem 3.3.9 (c.f. [20, 27]). Fix an alphabet Σ. Construct an infinite sequence of satisfiable MSO formulas $\varphi_{1}, \varphi_{2}, \ldots$ s.t., for every n, φ_{n} has size linear in n and the smallest word-model of φ_{n} has size

[solution]
Problem 3.3.10. Is the language of palindromes over $\Sigma=\{0,1\}$ definable in MSO over word-models in the signature $\left\{\leq, P_{0}, P_{1}\right\}$, where P_{0}, P_{1} are unary predicates encoding the labelling?
[solution]
Problem 3.3.11. Consider the alphabet $\Sigma=\{a, b\}$. Is the language defined by the following SO sentence definable in MSO?

$$
\begin{gather*}
\varphi \equiv \exists R \cdot \forall x, y \cdot\left(R(x, y) \rightarrow\left(R(y, x) \wedge\left(P_{a}(x) \leftrightarrow P_{b}(y)\right)\right)\right) \wedge \\
\forall x \cdot \exists!y \cdot R(x, y) \tag{solution}
\end{gather*}
$$

Problem 3.3.12. Let $\Sigma=\{a, b\}$ be a binary alphabet. Prove that there is no MSO formula $\varphi(x, y, z)$ s.t. for every finite word $w \in \Sigma^{*}$ and positions $a, b, c \in\{0, \ldots,|w|-1\}$,

$$
\mathfrak{A}_{w}, x: a, y: b, z: c \vDash \varphi \quad \text { if, and only if, } \quad a+b \equiv c \quad(\bmod |w|) .
$$

Hint: Show how to use φ to construct a nonregular language. [solution]

3.4 Miscellaneous problems

Problem 3.4.1 (Elementary separability of projective classes). A set of models is an elementary class if it is the set of models of a sentence of first-order logic, and it is a projective class if it is the set of models of an existential sentence of second order logic. Show that any two disjoint projective classes can be separated by an elementary class. Hint: Use interpolation.
[solution]
Problem 3.4.2. Consider the standard field of real numbers ($\mathbb{R},+, \cdot, 0,1$). Write an MSO formula $\varphi(x)$ which holds precisely when x is a rational number: For every $a \in \mathbb{R}$,

$$
\mathbb{R}, x: a \vDash \varphi \quad \text { if, and only if, } \quad a \in \mathbb{Q} .
$$

Can the sentence be written in the universal fragment of SO?
[solution]

Chapter 4

The decision problem

Preliminaries

Any given theory Γ (which could be an axiomatic theory generated by a set of axioms $\operatorname{Th}(\Delta)$, or the theory of a given structure $\operatorname{Th}(\mathbb{N},+))$ gives rise to a decision problem.

Decision problem of theory Γ.
Input: A sentence φ in the language of Γ.
Output: YES iff $\varphi \in \Gamma$.
In this section we explore several examples of theories with a decidable/undecidable decision problem and useful techniques to establish these facts.

4.1 Finite model property

Definition 4.1.1. Let $\vDash_{\text {fin }} \varphi$ hold whenever $\mathfrak{A} \vDash \varphi$ holds for every finite model \mathfrak{A}. A sentence φ has the finite model property if, and only if,

$$
\vDash \varphi \quad \text { if, and only if, } \quad \vDash_{\text {fin }} \varphi
$$

and a set of sentences Γ has the finite model property if every sentence $\varphi \in \Gamma$ has it. In other words, validity of sentences in Γ reduces to validity on finite models.

Problem 4.1.2 (Finite model property). Assume that Γ is a complete theory with the finite model property. Is it decidable whether $\varphi \in \Gamma$?
[solution]
Problem 4.1.3 (Small model property for the $\exists^{*} \forall^{*}$-fragment). Consider sentences of the form

$$
\varphi \equiv \exists x_{1}, \ldots, x_{m} \cdot \forall y_{1}, \ldots, y_{n} \cdot \psi
$$

where ψ is quantifier-free possibly using equality, without function symbols. Can we bound the size of models of φ ? What happens if ψ contains (at least) a single functional symbol?
[solution]
Problem 4.1.4 (Small model property for monadic logic). Consider a signature consisting only of unary relation symbols $\Sigma=\left\{P_{1}, \ldots, P_{k}\right\}$ (i.e., monadic predicates) and no constants or function symbols. If a sentence φ over Σ is satisfiable, can we find a bound on the size of a finite model thereof?
[solution]

4.2 Quantifier elimination

Definition 4.2.1. A theory Γ admits elimination of quantifiers if for every formula $\varphi \in \Gamma$ there exists a logically equivalent quantifier-free formula ψ, i.e., $\Gamma \vDash \varphi \leftrightarrow \psi$. If there exists a computable procedure which constructs ψ from φ, we then say that the theory admits effective elimination of quantifiers.

Problem 4.2.2. Show that a quantifier-elimination procedure needs only eliminate a single existential quantifier in formulas of the form

$$
\exists x \cdot \varphi_{1} \wedge \cdots \wedge \varphi_{n}
$$

where $\varphi_{1}, \ldots, \varphi_{n}$ are atomic formulas containing x. (In the context of database theory, such formulas are known as conjunctive queries.) [solution]

Problem 4.2.3 (Quantifier elimination and completeness). Let Σ be a vocabulary without constant symbols. Show that if a theory Γ over Σ admits elimination of quantifiers, then Γ is complete. [solution]

4.2.1 Equality

Problem 4.2.4 (Löwenheim (1915)). Consider the signature consisting of equality only $\Sigma=\{=\}$. Show that the theory of equality $\operatorname{Th}(A,=)$ admits effective elimination of quantifiers when A is an infinite set. Does this still hold when A is finite?
[solution]
Problem 4.2.5. Consider the empty signature and sentences using only equality. Let Γ be the set of sentences

$$
\left\{\forall x_{1}, \ldots, x_{n} \cdot \exists x_{n+1} \cdot \bigwedge_{i=1}^{n} \neg x_{n+1}=x_{i} \mid n \in \mathbb{N}\right\} .
$$

and consider the first-order theory of its logical consequences $\operatorname{Th}(\Gamma)=$ $\{\varphi \mid \Gamma \vDash \varphi\}$.

1. Prove that $\operatorname{Th}(\Gamma)$ is decidable.
2. Prove that $\operatorname{Th}(\Gamma)$ is in PSPACE.

4.2.2 One unary function

In this section, consider the signature $\Sigma=\{f,=\}$ consisting of a unary function f and equality. Typical axiomatisable properties of f are

$$
\begin{aligned}
\varphi_{\mathrm{inj}} & \equiv \forall x, y \cdot f(x)=f(y) \rightarrow x=y, & \text { (injectivity) } \\
\varphi_{\text {surj }} & \equiv \forall x \exists y \cdot f(y)=x, & \text { (surjectivity) } \\
\varphi_{\text {bij }} & \equiv \varphi_{\text {inj }} \wedge \varphi_{\text {surj }} . & \text { (bijectivity) }
\end{aligned}
$$

Problem 4.2.6 (2-cycles). Show that the theory $\operatorname{Th}(\varphi)$ of the logical consequences of the following sentence φ is decidable. Is it complete?

$$
\varphi \equiv \forall x . f(f(x))=x \wedge f(x) \neq x .
$$

Hint: Show that $\operatorname{Th}(\varphi)$ admits effective elimination of quantifiers. [solution]

4.2.3 Dense total order

Problem 4.2.7 (Quantifier elimination for dense total order). Show that the axiomatic theory of dense total orders without endpoints $\operatorname{Th}\left(\Delta_{\text {dlo }}\right)$ admits effective elimination of quantifiers, where

$$
\begin{array}{ccc}
\Delta_{\mathrm{dlo}}=\Delta_{\mathrm{lin}} \cup\{\forall x \forall y \cdot x<y \rightarrow \exists z \cdot x<z \wedge z<y, & & \text { (density) } \\
& \forall x \exists y \cdot y<x, & \text { (no minimal element) } \\
\forall x \exists y \cdot x<y\} . & \text { (no maximal element) } & \text { [solution] }
\end{array}
$$

4.2.4 Discrete total order

Problem 4.2.8. Consider the theory of the integer numbers with order $\operatorname{Th}(\mathbb{Z}, \leq)$.

1. Does it admit elimination of quantifiers?
2. Consider the extended vocabulary $\mathfrak{A}=(\mathbb{Z}, s, \leq)$, where s is the successor function $s(z)=z+1$. Does $\operatorname{Th}(\mathfrak{A})$ admit elimination of quantifiers?
3. Is $\operatorname{Th}(\mathfrak{A})$ complete?
[solution]

Problem 4.2.9. Consider the theory of natural numbers with order and successor $\operatorname{Th}(\mathbb{N}, s, \leq)$. Does it admit elimination of quantifiers? If not, how can one extend the vocabulary in order to ensure that in the extended vocabulary elimination of quantifiers holds?
[solution]

4.2.5 Rational linear arithmetic

Problem 4.2.10 (Fourier-Motzkin elimination). Rational arithmetic is the structure $\left(\mathbb{Q}, \leq,+,(c \cdot)_{c \in \mathbb{Q}}, 1\right)$. Show that the theory of rational arithmetic admits effective elimination of quantifiers, where " + " is the binary sum operator and there is a unary function $\lambda x \cdot c \cdot x$ for every rational number $c \in \mathbb{Q}$. Is the introduction of all the functions " $(c \cdot)$ " necessary? [solution]

4.2.6 Integral linear arithmetic

Problem 4.2.11 (Presburger's logic). Consider the theory of natural numbers with addition $\operatorname{Th}(\mathbb{N},+,=)$. Show that it is decidable via effective elimination of quantifiers. Hint: Extend the signature with suitable constants and relations.
[solution]

4.3 Interpretations

4.3.1 Real numbers

Problem 4.3.1. Consider the language of $(\mathbb{R},+, \cdot, 0,1, \leq)$, and let

$$
p(x)=a+b \cdot x+c \cdot x^{2}
$$

be a second-degree polynomial, where x, a, b, c are its free variables. Find quantifier-free equivalents for the following formulas

$$
\begin{aligned}
\varphi_{1} & \equiv \exists x \cdot p(x)=0 \\
\varphi_{2} & \equiv \forall x \cdot p(x)=0 \\
\varphi_{3} & \equiv \exists x_{1}, x_{2} \cdot x_{1} \neq x_{2} \wedge p\left(x_{1}\right)=0 \wedge p\left(x_{2}\right)=0 \\
\varphi_{4} & \equiv \forall(x \leq y \leq z) \cdot p(y)>0
\end{aligned}
$$

The previous problem is greatly generalised by the following theorem.
Theorem 4.3.2 (Tarski-Seidenberg). The theory of real numbers $\operatorname{Th}(\mathbb{R},+, \cdot, 0,1, \leq)$ admits effective elimination of quantifiers.

In the following problems we explore some applications of Theorem 4.3.2 "Tarski-Seidenberg".

Problem 4.3.3 (First-order theory of the complex numbers). Is the firstorder theory of the complex numbers $\operatorname{Th}(\mathbb{C},+, \cdot, 0,1)$ decidable? Hint: Interpret the complex numbers in the real numbers. [solution]
Problem 4.3.4 (First-order theory of planar Euclidean geometry). Consider planar Euclidean geometry (P, B, C) where P is the set of points of the plane, the betweenness relation $B \subseteq P^{3}$ contains triples of points (a, b, c) on the same line s.t. b is between a and c, and the congruence relation $C \subseteq P^{4}$ contains four-tuples of points (a, b, c, d) s.t. the line segment $a b$ has the same length as $c d$. Show that (P, B, C) is complete and decidable. Hint: Interpret euclidean geometry in the real numbers.

4.4 Model-checking on finite structures

In this section we investigate the complexity of the model-checking problem over finite structures.

Problem 4.4.1 (First-order logic model-checking). Consider the following decision problem.

First-Order logic model-Checking problem.
Input: A first-order logic sentence φ and a finite structure \mathfrak{A}.
Output: YES if, and only if, $\mathfrak{A} \vDash \varphi$.
What is its computational complexity? What happens if we bound the width of the input formulas (maximal number of free variables in every subformula)?

Problem 4.4.2 (SO model-checking). What is the computational complexity of the following decision problem?

SO MODEL-CHECKING PROBLEM.
Input: A SO sentence φ and a finite structure \mathfrak{A}.
Output: YES if, and only if, $\mathfrak{A} \vDash \varphi$.
[solution]

Chapter 5

Arithmetic

In this chapter we study the theory of natural numbers with addition and multiplication $\operatorname{Th}(\mathbb{N},+, \cdot)$, commonly called arithmetic.

5.1 Numbers

(*) Problem 5.1.1 (Gödel's β function). Show that there exists a predicate $\beta \subseteq \mathbb{N}^{4}$ definable in arithmetic s.t. for every sequence of natural numbers $a_{1}, \ldots, a_{k} \in \mathbb{N}$ there are numbers $a, b \in \mathbb{N}$ s.t. for every index $1 \leq i \leq k$ and any $x \in \mathbb{N}$,

$$
\beta(a, b, i, x) \quad \text { if, and only if, } \quad a_{i}=x .
$$

[solution]
The encoding power of β paves the way to show that arithmetic has very high expressive power, ranging from elementary arithmetic operations to undecidable sets of numbers. In the following exercise we combine the first two argument of β for readability in the rest of the section.

Problem 5.1.2 (Simplified function χ). From the definition of β it is clear that a sequence of natural numbers is encoded as a pair of numbers $a, b \in \mathbb{N}$. Is it possible to encode it as a single natural number $p \in \mathbb{N}$? [solution]

Problem 5.1.3. Express the following functions and predicates in arithmetic:

1. The divisibility predicate $m \mid n$.
2. The predicate $\operatorname{prime}(n)$ which is true iff n is a prime number.
3. The binary predicate saying that m, n are relatively prime.
4. The least common multiplier function $\operatorname{lcm}(m, n)$.
5. The binary predicate saying that m is the largest power of a prime that divides n.

Problem 5.1.4. Express the following functions and predicates in arithmetic:

1. The exponential function 2^{n}.
2. The factorial function n !.
3. The Fibonacci function:

$$
f(0)=0, \quad f(1)=1, \quad f(n+2)=f(n+1)+f(n), n \geq 0 .
$$

4. The inverse of the exponential function $\lfloor\log n\rfloor$.
5. The unary predicate saying that n is a perfect number, i.e., it is the sum of its divisors, except itself.
[solution]
Problem 5.1.5 (Collatz problem). Write a sentence $\varphi_{\text {Collatz }}$ expressing that the following sequence always reaches value 1 , for every starting value a_{0} :

$$
a_{n+1}= \begin{cases}\frac{a_{n}}{2} & \text { if } n \text { is even } \\ 3 \cdot n+1 & \text { otherwise }\end{cases}
$$

Whether $\varphi_{\text {Collatz }}$ is true in arithmetic is a long-standing open problem in number theory.
[solution]
Problem 5.1.6. Consider arithmetic $\mathfrak{A}=(\mathbb{N},+, \cdot, f)$ extended with an uninterpreted function symbol f. Write a sentence φ expressing the fact that f is a univariate polynomial with coefficients from \mathbb{N}. [solution]

Problem 5.1.7 (Counting solutions). For a given formula $\varphi(x)$ in the language of first-order arithmetic of one free variable x construct a formula $\# \varphi(y)$ s.t., for every $n \in \mathbb{N}$,
$\mathbb{N}, y: n \vDash \# \varphi(y) \quad$ if, and only if, $\quad|\{m \in \mathbb{N} \mid \mathbb{N}, x: m \vDash \varphi(x)\}|=n$.
[solution]

5.2 Automata and formal languages

In this section, we consider the finite alphabet $\Sigma=\{0,1\}$. A string $w=$ $a_{0} \cdots a_{n} \in \Sigma^{*}$ encodes a natural number $[w]_{2} \in \mathbb{N}$ under the least significant digit (LSD) encoding:

$$
[w]_{2}=a_{0} \cdot 2^{0}+\cdots+a_{n} \cdot 2^{n}
$$

Under this encoding, we say that an arithmetic formula $\varphi(x)$ with a single free variable x recognises a language $L \subseteq \Sigma^{*}$ if

$$
L=\left\{w \in \Sigma^{*} \mid \mathbb{N}, x:[w]_{2} \vDash \varphi\right\} .
$$

Problem 5.2.1. Show that every regular language $L \subseteq \Sigma^{*}$ can be recognised by a formula of arithmetic φ_{L}. [solution]

Problem 5.2.2. Show that a context-free language $L \subseteq \Sigma^{*}$ can be recognised by a formula of arithmetic $\varphi_{L} \quad$ [solution]

Problem 5.2.3. Show that for any recursively-enumerable language $L \subseteq$ Σ^{*} there is a formula of arithmetic φ_{L} recognising it.
[solution]
Problem 5.2.4. Prove that the decision problem for arithmetic is undecidable.
[solution]
Problem 5.2.5 (Modular arithmetic). Let $\Sigma=\{R,=\}$ be a signature containing a binary relation R and equality. Provide an axiomatisation of addition and multiplication over the signature Σ admitting finite models. [solution]

Problem 5.2.6 (Trakhtrenbrot's theorem). Show that the finite validity problem of first-order logic over a signature containing at least one nonunary relation (i.e., not monadic) is undecidable. What about the finite satisfiability problem?
[solution]
Problem 5.2.7. Is the first-order theory of the structure $\operatorname{Th}(\mathbb{Z},+, \cdot)$ decidable? Hint: Show that \leq is definable by appealing to Lagrange's four square theorem.
[solution]

5.3 Miscellanea

Problem 5.3.1. Recall the definition of finitely generated monoids $\mathfrak{M}=$ (M, \circ, e) from Problem 2.9.11 "Finitely generated monoids are not axiomatisable". We can encode a monoid \mathfrak{M} by arithmetic formulas $\mu(x), \nu(x, y, z), \epsilon(x)$ whenever

$$
\begin{aligned}
M & =\{a \in \mathbb{N} \mid \mathbb{N}, x: a \vDash \mu\}, \\
\circ & =\left\{(a, b, c) \in \mathbb{N}^{3} \mid \mathbb{N}, x: a, y: b, z: c \vDash \nu\right\}, \text { and } \\
\{e\} & =\{a \in \mathbb{N} \mid \mathbb{N}, x: a \vDash \epsilon\} .
\end{aligned}
$$

Write an arithmetic sentence $\gamma_{\mathfrak{M}}$ which may use μ, ν, ϵ encoding that \mathfrak{M} is finitely generated.

Problem 5.3.2 (Second-order quantifier elimination). Weak monadic second order logic (WMSO) has the same syntax as MSO. Semantically, the second order quantifier $\exists X$ means that there exists a finite subset of the universe X, and dually for $\forall X$. Prove that for any WMSO formula φ over the signature of arithmetic without free variables of second order there is a equivalent formula ψ of first-order logic.
[solution]

Part II

Solutions

Chapter 1

Propositional logic

1.1 Logical consequence

Solution of Problem 1.1.1. 1. Yes, this statement holds. Indeed, suppose by way of contradiction that there is a valuation ϱ such that $\llbracket \psi \rrbracket_{\varrho}=0 . \varphi$ is a tautology, hence $\llbracket \varphi \rrbracket_{\varrho}=1$. We get

$$
\begin{aligned}
\llbracket \varphi \leftrightarrow \psi \rrbracket_{\varrho}= & F_{\leftrightarrow}\left(\llbracket \varphi \rrbracket_{\varrho}, \llbracket \psi \rrbracket_{\varrho}\right) & & \text { by definition } \\
& =F_{\leftrightarrow}(1,0) & & \text { by assumptions } \\
& =0 & & \text { by definition of } F_{\leftrightarrow}
\end{aligned}
$$

We have got that $\varphi \leftrightarrow \psi$ is not a tautology, a contradiction.
2. No, this statement does not hold. Take $\varphi \equiv p$, which is satisfied by any valuation ϱ such that $\varrho(p)=1$, and let ψ be \perp, which is not satisfiable. Then $\varphi \leftrightarrow \psi$ is $p \leftrightarrow \perp$, which is satisfied by any valuation ϱ such that $\varrho(p)=0$.
3. Yes, this statement holds. Indeed, suppose that a valuation ϱ is such that $\llbracket \varphi \rrbracket_{\varrho}=1$. We want to prove that $\llbracket \psi \rrbracket_{\varrho}=1$. Suppose by way of contradiction that $\llbracket \psi \rrbracket_{\varrho}=0$. We get

$$
\begin{aligned}
1 & =\llbracket \varphi \leftrightarrow \psi \rrbracket_{\varrho} & & \varphi \leftrightarrow \psi \text { is a tautology } \\
& =F_{\leftrightarrow}\left(\llbracket \varphi \rrbracket_{\varrho}, \llbracket \psi \rrbracket_{\varrho}\right) & & \text { by definition of semantics } \\
& =F_{\leftrightarrow}(1,0) & & \text { by assumptions } \\
& =0 & & \text { by definition of } F_{\leftrightarrow}, \text { a contradiction }
\end{aligned}
$$

4. No, this statement does not hold. Take $\varphi \equiv \mathrm{T}$, which is a tautology, and let $\psi \equiv p$, which is not a tautology. Nevertheless $\top \leftrightarrow p$ is satisfied by any valuation ϱ such that $\varrho(p)=1$, so it is satisfiable.
5. Yes, this statement holds. By assumption, there is a valuation ϱ s.t. $\left[\varphi \leftrightarrow \psi \rrbracket_{\varrho}=1\right.$. Since φ is a tautology, $\llbracket \varphi \rrbracket_{\varrho}=1$, and, by the definition of $F_{\leftrightarrow},[\psi]_{\varrho}=1$ as well.

Solution of Problem 1.1.2 "Transitivity of " \vDash "". Assume ϱ is a valuation satisfying all formulas in Γ. From the first assumption it satisfies all formulas in Δ, and from the second assumption all formulas in Ξ, as required.

Solution of Problem 1.1.3. Assume $\Gamma \cup\{\varphi\} \vDash \psi$ and take any valuation ϱ satisfying all formulas in Γ. To show $\llbracket \varphi \rightarrow \psi \rrbracket_{\varrho}=1$, by the definition of classical semantics, we must show that $\llbracket \varphi \rrbracket_{\varrho}=1$ implies $\llbracket \psi \rrbracket_{\varrho}=1$. This follows from the assumption $\Gamma \cup\{\varphi\} \vDash \psi$. The other direction is similar.

Solution of Problem 1.1.4. From Problem 1.1.3, if $\vDash \varphi \rightarrow \psi$, then $\varphi \vDash$ ψ. We conclude by the transitivity of " \vDash " established in Problem 1.1.2 "Transitivity of " \vDash "".

Solution of Problem 1.1.5. A variable valuation ϱ extends uniquely to a valuation of formulas $\llbracket-\rrbracket_{\varrho}$. The composite function $\sigma=\llbracket-\rrbracket_{\varrho} \circ S$ is a new valuation of variables. We claim the following commutativity property:

$$
\llbracket \varphi \rrbracket_{\sigma}=\llbracket S(\varphi) \rrbracket_{\varrho} .
$$

The proof by a standard structural induction on φ, where the only interesting case is the one for variables:

$$
\llbracket p \rrbracket_{\sigma}=\sigma(p)=\llbracket S(p) \rrbracket_{\varrho}
$$

Consequently, if ϱ satisfies all formulas in $S(\Gamma)$, then σ satisfies Γ. It follows that σ satisfies φ, so ϱ satisfies $S(\varphi)$.

Solution of Problem 1.1.6. By definition, $\Delta \vDash \varphi$ if, for every valuation ϱ s.t. $\llbracket \psi \rrbracket_{\varrho}=1$ for every $\psi \in \Delta$, we have $\llbracket \varphi \rrbracket_{\varrho}=1$ as well. Replacing Δ with a larger set of formulas Γ results in a smaller set of such ψ 's, and thus $\Gamma \vDash \varphi$ follows.

An alternative proof is obtained by the Completeness Theorem. Assuming $\Delta \vDash \varphi$, we get that there is a proof of φ from Δ. Because $\Gamma \supseteq \Delta$, the very same proof demonstrates that $\Gamma \vdash \varphi$ and hence $\Gamma \vDash \varphi$.

Solution of Problem 1.1.7. By pushing the negation inside, $\neg \hat{\varphi}$ is the same as φ, except that a variable p is replaced by $\neg p$. For every truth assignment $\varrho, \varrho(\varphi)=\hat{\varrho}(\neg \hat{\varphi})$, where $\hat{\varrho}(p)=1-\varrho(p)$ is the truth assignment that flips the truth value of ϱ at every propositional variable. If $\varrho(\varphi)=1$ for every $\varrho(\varphi)$, then the same holds true for $\neg \hat{\varphi}$, and vice-versa, thus proving the first point. For the second point, if $\varrho(\varphi)=\varrho(\psi)$ for every ϱ, then the same holds true for $\neg \hat{\varphi}, \neg \hat{\psi}$, and thus for $\hat{\varphi}, \hat{\psi}$. For the third point it suffices to swap \perp with T.

Solution of Problem 1.1.8. No. By assumption there are two partial valuations ϱ_{1}, ϱ_{2} s.t. $\varrho_{1} \vDash \varphi$ and $\varrho_{2} \vDash \neg \psi$. Since there are no common variables, $\varrho=\varrho_{1} \cup \varrho_{2}$ is well-defined and $\varrho \vDash \varphi \wedge \neg \psi$, thus showing $\neq \varphi \rightarrow \psi$.

Solution of Problem 1.1.9. The set of formulas $\Gamma_{i j}$ is satisfiable if, and only if, there is no path from p_{i} to p_{j}. A graph is strongly connected if there is a path between any two distinct vertices thereof. Take $\varphi_{n} \equiv \bigwedge_{i \neq j}\left(p_{i} \rightarrow\right.$ p_{j}).

1.2 Normal forms

Solution of Problem 1.2.2 "Normal forms". The translation into NNF is obtained by repeatedly pushing negations inside the formula according to De Morgan's laws (to be used as left-to-right rewrite rules):

$$
\neg\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow \neg \varphi_{1} \vee \neg \varphi_{2} \quad \text { and } \quad \neg\left(\varphi_{1} \vee \varphi_{2}\right) \leftrightarrow \neg \varphi_{1} \vee \neg \varphi_{2} .
$$

If at any point a negation is in front of another negation, we eliminate them thanks to the double negation law

$$
\begin{equation*}
\neg \neg \varphi_{1} \leftrightarrow \varphi_{1} . \tag{1.1}
\end{equation*}
$$

This process is repeated until negation appears only in literals. The complexity of this translation is polynomial in the worst case (and sometimes may even make the formula smaller).

We give two solutions for the DNF translation. Assume that the propositional variables of φ are precisely those in $P=\left\{p_{1}, \ldots, p_{n}\right\}$. The first solution is to enumerate all the 2^{n} truth assignments $\varrho: P \rightarrow\{0,1\}$, and, whenever $\varrho \vDash \varphi$, then the characteristic formula φ_{ϱ} is a disjunct of ψ. The latter formula is of the form

$$
\varphi_{\varrho} \equiv \ell_{1} \vee \cdots \vee \ell_{n}
$$

where $\ell_{i} \equiv p_{i}$ if $\varrho\left(p_{i}\right)=1$, and $\ell_{i} \equiv \neg p_{i}$ otherwise. This translation is always exponential.

The second solution consists in first applying the NNF translation above, and then repeatedly applying the left and right distributivity law of disjunction over conjunction:

$$
\begin{aligned}
& (\varphi \vee \psi) \wedge \xi \leftrightarrow(\varphi \wedge \xi) \vee(\psi \wedge \xi) \text { and } \\
& \xi \wedge(\varphi \vee \psi) \leftrightarrow(\xi \wedge \varphi) \vee(\xi \wedge \psi)
\end{aligned}
$$

This solution is also exponential in the worst case, but for some formulas (such as those already in DNF) it is not.

The translation to CNF can be obtained by using the double negation law (1.1): First translate $\neg \varphi$ into a ψ in DNF, and then return as the result the NNF of $\neg \psi$.

Solution of Problem 1.2.3. The first point is the content of Problem 1.2.2 "Normal forms". The second point follows from the first point and De Morgan's law $\varphi \vee \psi \equiv \neg(\neg \varphi \wedge \neg \psi)$. For the third point, notice that we can define negation as $\neg \varphi \equiv \perp \rightarrow \varphi$, and thus we obtain disjunction $\varphi \vee \psi \equiv \neg \varphi \rightarrow \psi$, and we are back in the previous point.

For the fourth point, one can show by structural induction that formulas built from \wedge, \vee, and \rightarrow define only monotonic functions, using the fact that
the interpretation of \wedge, \vee, and \rightarrow are monotonic functions $\{0,1\} \times\{0,1\} \rightarrow$ $\{0,1\}$ and that monotonic functions are closed under composition. It follows that non-monotonic functions such as \neg cannot be represented.

The last point follows from the second one, since $\perp \equiv p \uparrow p$ (for some fixed propositional variable $p \in Z), \neg \varphi \equiv \varphi \uparrow \perp$, and $\varphi \wedge \psi \equiv \neg \varphi \uparrow \neg \psi$.

Solution of Problem 1.2.4 "Equisatisfiable 3CNF". For each subformula ψ of φ add one propositional variable $[\psi]$ and consider the equivalences:

$$
\begin{aligned}
{[\neg \sigma] } & \leftrightarrow \neg[\sigma] \\
{[\sigma \wedge \theta] } & \leftrightarrow[\sigma] \wedge[\theta], \\
{[\sigma \vee \theta] } & \leftrightarrow[\sigma] \vee[\theta] \\
{[\sigma \rightarrow \theta] } & \leftrightarrow[\sigma] \rightarrow[\theta] \\
{[\sigma \leftrightarrow \theta] } & \leftrightarrow[\sigma] \leftrightarrow[\theta] .
\end{aligned}
$$

Each of the formulas above can be put into an equivalent 3CNF of constant size by Problem 1.2.2 "Normal forms". The formula $[\varphi] \wedge \xi$, where ξ is the conjunction of all formulas $[\psi] \leftrightarrow \psi^{\prime}$ above with ψ ranging over all subformulas of φ, is equisatisfiable with φ, has linear size, and it is in 3CNF.

Solution of Problem 1.2.5. First note that for 1-DNF and CNF formulas one can indeed find such a sequence, for instance

$$
p_{0}, p_{0} \vee p_{1}, p_{0} \vee p_{1} \vee p_{2}, \ldots
$$

The formulas above are not in k-CNF form for any fixed k, and in fact for fixed k we show that there is no such sequence. Towards reaching a contradiction, assume that k is the least natural number s.t. there is an infinite sequence of k-CNF formulas $\varphi_{0}, \varphi_{1}, \ldots$ s.t.

$$
\vDash\left\{\varphi_{0} \rightarrow \varphi_{1}, \varphi_{1} \rightarrow \varphi_{2}, \ldots\right\}
$$

Let φ_{i} be of the form $\varphi_{i, 1} \wedge \cdots \wedge \varphi_{i, n_{i}}$, where each conjunct $\varphi_{i, j}$ has at most k disjuncts. Each conjunct $\varphi_{i, j}$ contains at least one variable from the
first formula φ_{0} : Since $\vDash \varphi_{0} \rightarrow \varphi_{i, j}$ holds, by the interpolation theorem (c.f. Problem 1.7.2 "Propositional interpolation") $\varphi_{i, j}$ is T and could be removed (\perp is excluded since we work with satisfiable formulas). For every propositional variable p, the strict implication $\vDash \varphi_{i} \rightarrow \varphi_{i+1}$ entails

$$
\vDash \varphi_{i}[p \mapsto \perp] \rightarrow \varphi_{i+1}[p \mapsto \perp] \quad \text { and } \quad \vDash \varphi_{i}[p \mapsto \top] \rightarrow \varphi_{i+1}[p \mapsto \top],
$$

and moreover at least one of the two implications above is strict. By the infinite pigeon-hole principle, we can replace p everywhere with (say) \perp and still get infinitely many strict implications

$$
\vDash\left\{\varphi_{0}[p \mapsto \perp] \rightarrow \varphi_{1}[p \mapsto \perp], \varphi_{1}[p \mapsto \perp] \rightarrow \varphi_{2}[p \mapsto \perp], \ldots\right\} .
$$

By repeatedly applying this substitution for every propositional variable of the first formula φ_{0}, we obtain a new chain containing infinitely many strict implications

$$
\vDash\left\{\psi_{0} \rightarrow \psi_{1}, \psi_{1} \rightarrow \psi_{2}, \ldots\right\},
$$

where each ψ_{i} is in $(k-1)$-CNF. Noticing that no such chain is possible in 0 -CNF concludes the argument.

1.3 Satisfiability

Solution of Problem 1.3.1. A DNF formula is satisfiable if, and only if, it contains a non-contradictory clause, i.e., one where no variable occurs together with its negation. The latter condition can be checked in NLOGSPACE, since checking that a clause is contradictory can be done in NLOGSPACE by guessing an occurrence of a variable and one of its negation, and coNLOGSPACE $=$ NLOGSPACE by the Immerman-Szelepcsényi's theorem [16, 28].

Solution of Problem 1.3.2. We construct the so called implication graph $G=(V, E)$: Each literal $\ell \in V$ is a node and for every clause $\ell_{1} \vee \ell_{2}$ there are two edges $\left(\neg \ell_{1}, \ell_{2}\right),\left(\neg \ell_{2}, \ell_{1}\right) \in E$ (where we identify $\neg \neg \ell$ with ℓ). Intuitively, an edge $\left(\ell_{1}, \ell_{2}\right) \in E$ represents the constraints that, if ℓ_{1} is true, then ℓ_{2} must also be true. Then φ is satisfiable if, and only if, there is no path
from some literal ℓ to its negation $\neg \ell$. The latter property is solved by a graph reachability query, which can be checked in NLOGSPACE (and also in linear time).

Solution of Problem 1.3.3. By interpreting " \oplus " as addition "+" and complement " $\neg p$ " as $1-p$, formulas in XOR-CNF can be seen as systems of linear equations modulo 2 . The latter can be solved in cubic time with Gaussian elimination, or even in deterministic space complexity $O\left(\log ^{2} n\right)$ [8].

Solution of Problem 1.3.4. We present a dynamic programming algorithm solving the satisfiability problem for Horn formulas φ. We maintain a set P of propositional variables which must be true under any satisfying assignment for φ. Initially, we set $P:=\varnothing$. We have only one update rule for P : For every Horn clause $p_{1} \wedge \cdots \wedge p_{n} \rightarrow q$ of φ, whenever $\left\{p_{1}, \ldots, p_{n}\right\} \subseteq P$, then let $P:=P \cup\{q\}$. The algorithm terminates when there is a clause $p_{1} \wedge \cdots \wedge p_{n} \rightarrow \perp$ such that $\left\{p_{1}, \ldots, p_{n}\right\} \subseteq P$, or, after examining each clause, no new variables can be added to P.

In the former case the set is unsatisfiable, in the latter case it is satifiable by a valution which assigns 1 to all variables in P and 0 to all remaining variables. Since at each iteration at least one propositional variable is added to P, and each step has polynomial complexity, the algorithm works in PTIME.

Solution of Problem 1.3.5 "Self-reducibility of SAT". We do binary search on the set of all assignments by fixing a total order p_{1}, \ldots, p_{n} on the propositional variables of φ. At stage i, we construct a partial assignment $\varrho_{i}:\left\{p_{1}, \ldots, p_{i}\right\} \rightarrow\{0,1\}$ which can be extended to a satisfying assignment of the entire φ, and a satisfiable formula φ_{i} obtained by replacing propositional variables p_{1}, \ldots, p_{i} according to ϱ_{i}. Initially, we start with the everywhere undefined assignment $\varrho_{0}=\varnothing$ and the original formula $\varphi_{0} \equiv \varphi$. At stage $i+1$, we use the oracle to determine which one of the following two sentences is satisfiable:

$$
\varphi_{i}\left[p_{i+1} \mapsto 0\right] \quad \text { or } \quad \varphi_{i}\left[p_{i+1} \mapsto 1\right] .
$$

At least one of the two formulas above is satisfiable, since by inductive hypothesis φ_{i} is a satisfiable sentence. If the first sentence is satisfiable, then we let $\varrho_{i+1}=\varrho_{i}\left[p_{i+1} \mapsto 0\right]$ and $\varphi_{i+1} \equiv \varphi_{i}\left[p_{i+1} \mapsto 0\right]$; similarly if the second sentence is satisfiable. At the end of the process, $\varphi_{n} \equiv \top$ and ϱ_{n} is a satisfying assignment for φ. The number of calls to the oracle is at most $2 \cdot n$.

1.4 Complexity

Solution of Problem 1.4.1. Consider the following formula:

$$
\begin{aligned}
\varphi_{n} \equiv & \left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \rightarrow p_{3}\right) \wedge \ldots \wedge\left(p_{n-2} \rightarrow p_{n-1}\right) \wedge \\
& \left(q_{1} \rightarrow q_{2}\right) \wedge\left(q_{2} \rightarrow q_{3}\right) \wedge \ldots \wedge\left(q_{n-1} \rightarrow q_{n-1}\right) .
\end{aligned}
$$

Valuations satisfying this formula are those for which the sequence of values assigned to the p_{i} 's is nondecreasing, of which there are n of them; similarly for the q_{i} 's. There are precisely n^{2} such valuations.

Solution of Problem 1.4.2. We first estimate the number of propositional formulas over p_{1}, \ldots, p_{n} of length m, where p_{i} is written down using $\log i$ binary digits $\{0,1\}$. We call this the binary length. Each letter in a formula is one of the symbols

$$
0,1, \top, \perp, \wedge, \vee, \rightarrow, \leftrightarrow, \neg,(,)
$$

Thus there are at most $11^{m} \leq 2^{4 m}$ formulas of binary length m. On the other hand, there are $2^{2^{n}}$ Boolean functions of n variables. Therefore for $4 m<2^{n}$ the number of formulas is lower than the number of functions, and consequently there exist Boolean functions which require a formula of binary length at least $2^{n} / 4$ to be expressed.

Now we want to come back to the standard measure of size of formulas, where each variables has size 1 . Because we are using variables p_{1}, \ldots, p_{n}, their binary length is never greater than $\log n$. If we take the function which needs a formula of binary length at least $2^{n} / 4$, its standard length can not be lower than $2^{n} / 4 \log n$, even if it consists entirely of variables, which is of order $\Omega\left(2^{n} / \log n\right)$.

First solution of Problem 1.4.3. Consider the following sequence of formulas φ_{n} :

$$
\varphi_{1} \equiv p_{1} \quad \text { and } \quad \varphi_{n} \equiv \neg\left(\varphi_{n-1} \leftrightarrow p_{n}\right) \text { for every } n \geq 2
$$

One can prove by induction on n that φ_{n} is the xor of p_{1}, \ldots, p_{n}, i.e., $\varrho \vDash \varphi_{n}$ if $\varrho\left(p_{i}\right)=1$ for an odd number of p_{i} 's. way of contradiction to item 1 , suppose that φ_{n} is defined by a k-CNF formula φ. There exists a non-trivial clause ψ of φ not containing some variable p_{i}. Consider a valuation ϱ s.t. $\llbracket \psi \rrbracket_{\rho}=0$, and let $\varrho^{\prime}=\varrho\left[p_{i} \mapsto 1-\varrho\left(p_{i}\right)\right]$ be obtained from ϱ by flipping the value of p_{i}. We still have $\llbracket \psi \rrbracket_{\rho^{\prime}}=0$, since p_{i} does not appear in ψ, and thus $\llbracket \varphi \rrbracket_{\rho^{\prime}}=0$. This contradicts the assumption that φ is logically equivalent to φ_{n}, because the value of φ_{n} under ϱ and ϱ^{\prime} must be different.

By the argument above, every clause of every CNF formula equivalent to φ_{n} must contain all variables. Each such clause is false for precisely one valuation. Since φ_{n} is false under 2^{n-1} valuations, it must contain 2^{n-1} clauses, and therefore be of exponential length, proving item 2.

Second solution of Problem 1.4.3. A k-CNF formula over p_{1}, \ldots, p_{n} has at $\operatorname{most}\binom{2 n}{k}$ distinct clauses, since each clause is a subset of $\left\{p_{1}, \ldots, p_{n}\right\} \cup$ $\left\{\neg p_{1}, \ldots, \neg p_{n}\right\}$. Therefore any k-CNF formula is equivalent to a (k-CNF) formula of length $O\left(k \cdot\binom{2 n}{k}\right)$. For fixed k, the latter quantity is a polynomial $O\left(n^{k}\right)$. By Problem 1.4.2, there are Boolean functions expressible only by propositional formulas of the asymptotically larger length $\Omega\left(2^{n} / \log n\right)$, proving item 1.

Concerning item 2, if there are at most $p(n)$ non-trivial clauses and no repeating literal, then the length of the whole formula is $O(n \cdot p(n))$, and we reach a contradiction as in the previous paragraph.

Solution of Problem 1.4.4. Concerning the first point, for $n=1$ the claim trivially holds since 0 -ary functions do not have any arguments and thus no propositional variable can be used at all. Let $n \geq 2$. Consider the Boolean function $E Q\left(p_{1}, \ldots, p_{n}\right)$ which is 1 iff all its arguments are equal. This function can be expressed by the formula

$$
\bigwedge_{i=1}^{n-1}\left(p_{i} \leftrightarrow p_{i+1}\right)
$$

which uses only binary connectives and every variable at most twice. We claim that $E Q\left(p_{1}, \ldots, p_{n}\right)$ cannot be represented by a formula which uses each variable only once, even if all Boolean functions of at most $n-1$ variables are permitted as connectives. Assume, to the contrary, that such a formula φ exists. W.l.o.g. φ is of the form

$$
\varphi \equiv G\left(F\left(p_{1}, \ldots, p_{k}\right), p_{k+1}, \ldots, p_{n}\right)
$$

where F and G are some Boolean connectives.In order to keep the presentation light, we identify F and G with their respective Boolean functions. Let us consider $F(0, \ldots, 0), F(1, \ldots, 1)$, and $F(1,0, \ldots, 0)$. They belong to a two-element set $\{0,1\}$, hence at least two of them must be equal. If $F(0, \ldots, 0)=F(1, \ldots, 1)$, then

$$
\begin{aligned}
1=E Q(0, \ldots, 0) & =G(F(0, \ldots, 0), 0, \ldots, 0)= \\
& =G(F(1, \ldots, 1), 0, \ldots, 0)=E Q(1, \ldots, 1,0, \ldots, 0)=0,
\end{aligned}
$$

which is a contradiction. The other cases are analogous.
Regarding the second point, a formula over n variables using each variable at most $p(n)$ times is of length $O(n \cdot p(n))$. It follows from Problem 1.4.2 that such formulas are too short to express all Boolean functions of n variables.

Solution of Problem 1.4.5. By a trivial counting argument there are finitely many k 's for which we can express k-colourability with formulas φ, ψ. More precisely, there are only $2^{2^{2}} \cdot 2^{2^{2}}=256$ possible choices of φ, ψ up to logical equivalence, and thus at most 256 values of k for which the answer might be positive.

For $k \in\{1,2\}$, we can write the required formulas. For $k=1$, the graph is k-colourable if, and only if, there are no edges, and thus we can take $\varphi \equiv \perp$ and $\psi \equiv \mathrm{T}$. For $k=2$, it suffices to notice that the truth value of p_{i} can be interpreted as the colour of the corresponding vertex v_{i}, and thus the required formulas are

$$
\varphi\left(p_{i}, p_{j}\right) \equiv p_{i} \wedge \neg p_{j} \vee \neg p_{i} \wedge p_{j} \quad \text { and } \quad \psi\left(p_{i}, p_{j}\right) \equiv \mathrm{\top} .
$$

For $k>2$ this is impossible. We present two solutions of this fact.

Figure for Problem 1.4.5.

First solution. The first solution holds under the assumption NLOGSPACE \neq NPTIME. We can assume w.l.o.g. that φ, ψ are in $2-\mathrm{CNF}$, and thus $\Delta_{\varphi, \psi}(G)$ is equivalent to a 2 -CNF formula whose size is polynomial in the size of the graph. Satisfiability of 2-CNF formulas is in NLOGSPACE (c.f. Problem 1.3.2), and consequently so it is satisfiability of $\Delta_{\varphi, \psi}(G)$. Since k colourability is NPTIME-complete for every $k>2$, there are no such φ, ψ unless NLOGSPACE $=$ NPTIME.

Second solution. The second solution has been proposed by Tadeusz Dudkiewicz and does not require any complexity-theoretic assumption. Suppose, by way of contradiction, that the required formulas φ, ψ exist. Consider the graph G over vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ obtained from the complete graph K_{n} by removing edge (v_{1}, v_{2}) (c.f. figure for the problem). The graph G is n-colourable, and thus $\Delta_{\varphi, \psi}(G)$ is satisfiable, say by valuation ϱ. By definition of $\Delta_{\varphi, \psi}(G), \varrho \vDash \varphi\left(p_{1}, p_{3}\right), \varphi\left(p_{1}, p_{4}\right)$. On the other hand, $\varrho \not \approx \varphi\left(p_{1}, p_{2}\right)$, because, otherwise, we would have $\varrho \vDash \Delta_{\varphi, \psi}\left(K_{n}\right)$, even though K_{n} is not n-colourable. Thus, $\varrho\left(p_{2}\right) \neq \varrho\left(p_{3}\right), \varrho\left(p_{2}\right) \neq \varrho\left(p_{4}\right)$, implying $\varrho\left(p_{3}\right)=\varrho\left(p_{4}\right)$. Since $\varrho \vDash \varphi\left(p_{3}, p_{4}\right)$ by definition of $\Delta_{\varphi, \psi}(G), \varphi$ is satisfied when both its arguments are set to $\varrho\left(p_{2}\right)$. Consequently, $\Delta_{\varphi, \psi}\left(K_{n}\right)=$ $\left\{\varphi\left(p_{i}, p_{j}\right) \mid 0 \leq i, j \leq n\right\}$ is satisfied by the valuation assigning $\varrho\left(p_{2}\right)$ to every variable. This is a contradiction, because K_{n} is not n-colourable.

1.5 Compactness

Solution of Problem 1.5.1 "Compactness theorem for propositional logic". Let $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be an infinite set of sentences of propositional logic s.t. every finite subset thereof is satisfiable. Consider now the set of sentences

$$
\Delta=\left\{\mathrm{T}, \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \ldots\right\} .
$$

Clearly, also every finite subset of Δ is satisfiable, and if Δ is satisfiable, then so is Γ. Let $\psi_{i} \equiv \varphi_{1} \wedge \cdots \wedge \varphi_{i}$. Consider the tree where vertices of height i are the partial valuations $\varrho:\left\{p\right.$ in $\left.\psi_{i}\right\} \rightarrow\{0,1\}$ satisfying ψ_{i}, and there is an edge from ϱ at height i to ϱ^{\prime} at height $i+1$ whenever ϱ and ϱ^{\prime} agree on the variables of ψ_{i}. Each level of the tree is finite since ψ_{i} has finitely many variables, and thus the tree is finitely branching. Since the tree is infinite, by König's lemma there is an infinite branch $\varrho_{0}, \varrho_{1}, \ldots$, where each subsequent valuation extends the previous one. Thus, $\varrho_{\omega}=\varrho_{0} \cup \varrho_{1} \cup \cdots$ is a total valuation satisfying every ψ_{i} 's. Consequently, Δ is satisfiable, as required.

Solution of Problem 1.5.2 "Compactness implies König's lemma". Let $G=$ (V, E) be an infinite, finitely branching tree, and we need to show that it has an infinite branch. We first observe that the assumptions on G imply that we can find arbitrarily long branches starting from the root. We layer the vertices in the tree according to their height, i.e., their distance from the root: $V=V_{0} \cup V_{1} \cup \cdots$, where

$$
V_{i}=\{v \in V \mid v \text { is at height } i\}=\left\{v_{i, 1}, \ldots, v_{i, n_{i}}\right\} .
$$

For each vertex $v_{i, j} \in V_{i}$ we have a propositional variable $p_{i, j}$ indicating that $v_{i, j}$ belongs to an infinite branch. The local requirements are the following:

1. For every height i, exactly one $v_{i, j}$ is selected:

$$
\varphi_{i} \equiv \bigvee_{1 \leq j \leq n_{i}} p_{i, j} \wedge \bigwedge_{1 \leq j<k \leq n_{i}} \neg p_{i, j} \vee \neg p_{i, k}
$$

2. For every height $i, v_{i, j}$ and $v_{i+1, k}$ can be selected only if there is an edge between them in the tree:

$$
\psi_{i} \equiv \underset{\left(v_{i, j}, v_{i+1, k}\right) \in E}{\bigvee} p_{i, j} \wedge p_{i+1, k} .
$$

Consider the infinite set of sentences

$$
\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots, \quad \text { where } \Gamma_{i}=\left\{\varphi_{0}, \ldots, \varphi_{i}, \psi_{0}, \ldots, \psi_{i}\right\}
$$

By construction, Γ_{i} is satisfiable if, and only if, G contains a branch of length i, and Γ is satisfiable if, and only if, G contains an infinite branch. Towards reaching a contradiction, assume that Γ is not satisfiable, and thus, by the compactness theorem there is an unsatisfiable finite subset thereof $\Delta \subseteq_{\text {fin }} \Gamma$. Since Δ is finite, there is a level i s.t. $\Delta \subseteq \Gamma_{i}$, and since Δ is unsatisfiable, then also the larger Γ_{i} is unsatisfiable. However, this contradicts the fact that G contains arbitrarily long branches.

Solution of Problem 1.5.3 "De Bruijn-Erdôs theorem". We encode colourability as an infinite set of sentences. For each country $i \in V$ and colour $1 \leq j \leq k$, let $p_{i j}$ be a propositional variable indicating that the i-th country has colour k. Then, k-colourability of G can be described by an infinite set of sentences Γ : For each country i, we have a sentence to make sure i is uniquely coloured, and for each pair of neighbouring countries $(i, j) \in E$ we have a sentence ensuring that their colours differ. If Γ is unsatisfiable, then by compactness it has a finite unsatisfiable subset $\Delta \coprod_{\text {fin }} \Gamma$. Since Δ is finite, it can only refer to a finite subgraph G^{\prime} of G, expressing a necessary (but not sufficient in general) condition to k-colourability of G^{\prime}. Since Δ^{\prime} is unsatisfiable, G^{\prime} is not k-colourable, and thus G has a finite subgraph which is not k-colourable.

Solution of Problem 1.5.4. For $i, j \in \mathbb{N}$, let $p_{i j}$ be a propositional variable indicating that the i-th man and the j-th woman are married. For each man i, let $J_{i} \subseteq_{\text {fin }} \mathbb{N}$ be the finite set of his girlfriends. The constraints of the problem are expressed by the following infinite set Γ of formulas (to be
interpreted conjunctively):

$$
\begin{aligned}
\left\{\bigvee_{j \in J_{i}} p_{i j} \mid i \in \mathbb{N}\right\} & \cup\left\{\neg\left(p_{i j_{1}} \wedge p_{i j_{2}}\right) \mid i, j_{1}, j_{2} \in \mathbb{N}, j_{1} \neq j_{2}\right\} \cup \\
& \cup\left\{\neg\left(p_{i_{1} j} \wedge p_{i_{2} j}\right) \mid i_{1}, i_{2}, j \in \mathbb{N}, i_{1} \neq i_{2}\right\}
\end{aligned}
$$

The first group expresses the fact that every man marries some of his girlfriends, the second one forbids polygyny, and the third one polyandry. Let $\Delta_{k} \subseteq \Gamma$ be the (infinite) subset of Γ referring to men $\{0, \ldots, k-1\}$. Since by assumption any k man jointly have at least k girlfriends, Δ_{k} is satisfiable. Any finite subset of formulas $\Delta \coprod_{\text {fin }} \Gamma$ refers to finitely many men, which implies $\Delta \subseteq \Delta_{k}$ for some finite k (the maximum index of a man referred to by Δ), and thus also Δ is satisfiable. By the compactness theorem, Γ is satisfiable.

Solution of Problem 1.5.5. There is no such set. By way of contradiction, let us suppose that such a set Γ exists. Consider

$$
\Delta=\Gamma \cup\left\{r, \neg p_{0}, \neg p_{1}, \ldots\right\} .
$$

Every finite subset $\Delta_{0} \subseteq_{\text {fin }} \Delta$ is satisfiable: it contains only finitely many negated variables; take a valuation ϱ which makes r and one of the not mentioned variables true. By assumption $\varrho \vDash \Gamma$, hence $\varrho \vDash \Delta_{0}$. By the compactness theorem, Δ is satisfiable. This is a contradiction, because the only valuation ϱ which may satisfy it assigns 0 to all the p_{i} 's (by the added negations) and 1 to r, and thus by assumption it cannot satisfy Γ.

Solution of Problem 1.5.6. No. By way of contradiction, suppose that such a set Γ exists and consider the set

$$
\Delta=\Gamma \cup\left\{p_{0}, p_{1}, \ldots\right\}
$$

Take any finite subset $\Delta_{0} \subseteq_{\text {fin }} \Delta$. It contains only finitely many sentences of the form p_{i}. The valuation ϱ assigning 1 to those p_{i} 's and 0 to the remaining ones assigns 1 to finitely many variables, hence $\Gamma \vDash \varrho$ by assumption, and thus $\Delta_{0} \vDash \varrho$. By the compactness theorem, Δ is satisfiable. However, the only valuation that may satisfy it assigns 1 to all variables, and hence does not satisfy Γ, contradicting the assumption.

Solution of Problem 1.5.8 "The name of the game". Closed sets are precisely those of the form $\llbracket \Gamma \rrbracket$. Let $\mathcal{C}=\left\{\llbracket \Gamma_{0} \rrbracket, \llbracket \Gamma_{1} \rrbracket, \ldots\right\}$ be a countable family of closed sets with the property that every finite subfamily thereof has nonempty intersection. W.l.o.g. we can assume that each Γ_{i} is finite and that they form a nondecreasing chain under set inclusion:

$$
\Gamma_{0} \subseteq \Gamma_{1} \subseteq \cdots
$$

By assumption, $\llbracket \Gamma_{i} \rrbracket \neq \varnothing$, i.e., Γ_{i} is satisfiable. By compactness of propositional logic, $\Gamma_{\omega}=\Gamma_{0} \cup \Gamma_{1} \cup \cdots$ is also satisfiable, and thus $\left[\Gamma_{\omega} \rrbracket=\right.$ $\left.\llbracket \Gamma_{0}\right] \cap\left[\Gamma_{1}\right] \cap \cdots=\cap \mathcal{C} \neq \varnothing$, as required.

1.6 Resolution

Solution of Problem 1.6.1 "Resolution is sound". We show by rule induction that resolution (R) preserves validity: Assume $\Gamma \vDash p \vee \varphi$ and $\Gamma \vDash \neg p \vee \psi$, and let ϱ be any valuation satisfying all formulas in Γ. If $\varrho(p)=0$, then $\varrho \vDash \varphi$; if $\varrho(p)=1$, then $\varrho \vDash \psi$. We obtain $\varrho \vDash \varphi \vee \psi$, as required.

A set of inference rules is complete if it can prove all logical entailments,

$$
\Gamma \vDash \varphi \quad \text { implies } \quad \Gamma \vdash \varphi,
$$

and refutation complete if it can derive a contradiction from any unsatisfiable set of formulas:

$$
\Gamma \vDash \perp \quad \text { implies } \quad \Gamma \vdash \perp .
$$

Solution of Problem 1.6.2 "Resolution is refutation complete". Assume Γ is an unsatisfiable finite set of clauses not containing any tautology. Call such a set stable. We build a sequence of stable sets related by provability

$$
\Gamma=\Gamma_{0} \vdash \Gamma_{1} \vdash \cdots \vdash \Gamma_{n}=\perp,
$$

starting at Γ and ending in the empty set of clauses Γ_{n}. Assume Γ_{i} has already been built. Since Γ_{i} is unsatisfiable, there exists a propositional
variable p appearing positively and negatively. Consider the following decomposition

$$
\Gamma_{i}=\Gamma_{i}^{p} \cup \Gamma_{i}^{p} \cup \Delta
$$

where Γ_{i}^{p} is the set of clauses containing $p, \Gamma_{i}{ }^{p}$ is the set of clauses containing $\neg p$, and Δ is the remaining set of clauses. Since Γ_{i} does not contain any tautology, $\Gamma_{i}^{p}, \Gamma_{i}^{\sim}$ are disjoint. We build the next set as

$$
\Gamma_{i+1}=\left\{\varphi \vee \psi \mid(p \vee \varphi) \in \Gamma_{i}^{p},(\neg p \vee \psi) \in \Gamma_{i}^{\neg p}\right\} \cup \Delta .
$$

Since Γ_{i+1} is obtained from Γ_{i} by repeated applications of resolution, $\Gamma_{i} \vdash \Gamma_{i+1}$. By soundness of resolution (c.f. Problem 1.6.1 "Resolution is sound"), also Γ_{i+1} is unsatisfiable. Since no tautologies are introduced, Γ_{i+1} is a stable set of clauses containing one less propositional variable than Γ_{i}. The procedure eventually terminates with an empty Γ_{n}. By transitivity, we get $\Gamma \vdash \perp$, as required.

The case when Γ is infinite is handled with an application of compactness (c.f. Problem 1.5.1 "Compactness theorem for propositional logic"), by finding a finite unsatisfiable set of formulas $\Delta \subseteq_{\text {fin }} \Gamma$ and applying the reasoning above to Δ.

Finally, resolution incompleteness as witnessed by $\vDash a \rightarrow(a \vee b)$: there is no way to apply resolution (R) to derive $a \vdash a \vee b$.

1.7 Interpolation

Solution of Problem 1.7.2 "Propositional interpolation". We remove a single propositional variable p occurring in φ but not in ψ by virtue of the tautology

$$
\vDash \varphi \rightarrow \xi, \quad \text { where } \xi \equiv \varphi[p \mapsto \mathrm{~T}] \vee \varphi[p \mapsto \perp]
$$

In order to also have $\vDash \xi \rightarrow \psi$, we rely on the following tautology:

$$
\vDash \varphi \rightarrow \psi \text { implies } \vDash \varphi[p \mapsto \mathrm{\top}] \vee \varphi[p \mapsto \perp] \rightarrow \psi \quad(p \text { not in } \psi)
$$

The latter tautology follows from the fact that every valuation ϱ satisfying ξ extends to a valuation ϱ^{\prime} satisfying φ for some choice of $\varrho^{\prime}(p)$; by the

Figure for Problem 1.7.2 "Propositional interpolation".
assumption ϱ^{\prime} satisfies ψ, and since p does not occur in ψ, the same holds for the original ϱ. The interpolation theorem follows by removing all such p 's one after the other.

First solution of Problem 1.7.3 "Beth's definability theorem". By Problem 1.1.3, we can rewrite the assumption on the implicit definability of p as

$$
\vDash \varphi \rightarrow \varphi[p \mapsto q] \rightarrow p \rightarrow q
$$

We group first the formulas containing p and later those containing q :

$$
\vDash \varphi \wedge p \rightarrow \varphi[p \mapsto q] \rightarrow q
$$

From the interpolation theorem for propositional logic (c.f. Problem 1.7.2 "Propositional interpolation") there exists an interpolant ψ not containing neither p nor q s.t.

$$
\vDash \varphi \wedge p \rightarrow \psi \quad \text { and } \quad \vDash \psi \rightarrow \varphi[p \mapsto q] \rightarrow q
$$

By another application of Problem 1.1.3, we obtain the required explicit definability of p.

Second solution of Problem 1.7.3 "Beth's definability theorem". This solution uses a brute force approach.

Assume that the variables of φ are $p, r_{1}, \ldots r_{k}$. First observe that for any valuation $\varrho:\left\{r_{1}, \ldots r_{k}\right\} \rightarrow\{0,1\}$ there is at most one $a \in\{0,1\}$ such that $\varrho[p \mapsto a] \vDash \varphi$. Indeed, suppose to the contrary that for some ϱ both its extensions satisfy φ. Then $\varrho[q \mapsto 0][p \mapsto 1] \vDash \varphi, \varphi[p \mapsto q], \neg(p \leftrightarrow r)$, which contradicts the assumptions.

Let this a be denoted $p(\varrho)$. We extend it to a total function $p:\{0,1\}^{k} \rightarrow$ $\{0,1\}$ in an arbitrary way. We know that any such function can be defined by a propositional formula ψ involving only variables r_{1}, \ldots, r_{k} (c.f. Problem 1.2.3). Now ψ is the desired explicit definition of p.

First solution of Problem 1.7.4. We propose two solutions to this problem. Let $\Delta=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$. For each i we have $\Gamma \vDash \varphi_{i}$. From the compactness theorem there is a finite subset $\Gamma_{i} \subseteq_{\text {fin }} \Gamma$ such that $\Gamma_{i} \vDash \varphi_{i}$. Thus, $\wedge \Gamma_{i}$ is a sentence s.t. $\vDash \wedge \Gamma_{i} \rightarrow \varphi_{i}$. It follows from the standard interpolation theorem that there is a sentence ϑ_{i} containing only the common variables of Γ_{i} and φ_{i} s.t. $\vDash \wedge \Gamma_{i} \rightarrow \vartheta_{i}$ and $\vDash \vartheta_{i} \rightarrow \varphi_{i}$. Take $\Theta=\left\{\vartheta_{1}, \vartheta_{2}, \ldots\right\}$.

Second solution of Problem 1.7.4. We simulate the proof of the interpolation theorem for individual formulas; cf. Problem 1.7.2 "Propositional interpolation". The interpolant was constructed by repeatedly replacing φ with

$$
\varphi[p \mapsto \top] \vee \varphi[p \mapsto \perp]
$$

whenever p did not occur in ψ. We slightly modify this step by postulating that, if p does not appear in φ, then the result is just $\varphi(\operatorname{instead}$ of $\varphi \vee \varphi)$. We apply the modified step to all formulas of Γ simultaneously, and we do so for each of the (possibly infinitely many) propositional variables occurring in Δ but not in Γ. Since each of the formulas in Γ contains only finitely many variables, thanks to the modification above it stabilises after finitely many steps. Let the stable variant of $\gamma \in \Gamma$ be $\hat{\gamma}$. In this way, the result of applying infinitely many steps to Γ is well-defined as $\{\hat{\gamma} \mid \gamma \in \Gamma\}$ and is the desired Θ.

Solution of Problem 1.7.5. As in Cook's theorem showing that SAT is NPTIME-complete, for every language $L \in$ NPTIME there exists a polynomial p and a family of propositional formulas $\varphi_{n}^{L}(\bar{p}, \bar{q})$, each with n input variables $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$ and polynomially many $p(n)$ advice variables $\bar{q}=\left(q_{1}, \ldots, q_{p(n)}\right)$, s.t. for every input \bar{p} of length n,

$$
\bar{p} \in L \quad \text { if, and only if, } \quad \text { there is } \bar{q} \text { s.t. } \vDash \varphi_{n}^{L}(\bar{p}, \bar{q})
$$

If $L, M \in$ NPTIME are disjoint, then for every input length n, input variables \bar{p}, polynomial advice \bar{q} for L, and polynomial advice \bar{r} for M,

$$
\vDash \varphi_{n}^{L}(\bar{p}, \bar{q}) \rightarrow \neg \varphi_{n}^{M}(\bar{p}, \bar{r}) .
$$

By assumption, there exists an interpolant $\psi(\bar{p})$ of polynomial circuit size using only the common variables \bar{p}, and thus L, M can be separated by a circuit of polynomial size, as required.

If $L \in$ NPTIME \cap coNPTIME, then it suffices to apply the result with M equal to the complement of L.

Solution of Problem 1.7.6. Let φ, ψ be CNF formulas of the form

$$
\varphi \equiv \varphi_{1} \wedge \ldots \wedge \varphi_{m} \quad \text { and } \quad \psi \equiv \psi_{1} \wedge \ldots \wedge \psi_{n}
$$

s.t. $\varphi \wedge \psi$ is unsatisfiable. We split the resolution rule into three rules:

$$
\begin{array}{ll}
\frac{\vdash p \vee \eta[\xi] \vdash \neg p \vee \eta^{\prime}\left[\xi^{\prime}\right]}{\vdash \eta \vee \eta^{\prime}\left[\xi \vee \xi^{\prime}\right]}, & (p \in \operatorname{var}(\varphi) \backslash \operatorname{var}(\psi)) \\
\frac{\vdash p \vee \eta[\xi] \vdash \neg p \vee \eta^{\prime}\left[\xi^{\prime}\right]}{\vdash \eta \vee \eta^{\prime}\left[\xi \wedge \xi^{\prime}\right]}, & (p \in \operatorname{var}(\psi) \backslash \operatorname{var}(\varphi)) \\
\frac{\vdash p \vee \eta[\xi] \vdash \neg p \vee \eta^{\prime}\left[\xi^{\prime}\right]}{\vdash \eta \vee \eta^{\prime}\left[(p \vee \xi) \wedge\left(\neg p \vee \xi^{\prime}\right)\right]}, & \tag{1.4}
\end{array}
$$

together with two new rules allowing us to get started:

$$
\begin{equation*}
\overline{\vdash \varphi_{i}[\perp]} \quad \text { and } \quad \overline{\vdash \psi_{j}[\mathrm{~T}]} \tag{1.5}
\end{equation*}
$$

In $\vdash \eta[\xi]$, the formula ξ is called a partial interpolant, and we prove that it satisfies the invariant of being an interpolant of $\varphi \wedge \neg \eta$ and $\psi \rightarrow \eta$:

$$
\vdash \eta[\xi] \text { implies }\left(I_{1}\right) \varphi \wedge \neg \eta \vDash \xi \text { and }\left(I_{2}\right) \xi \vDash \psi \rightarrow \eta \text {. }
$$

The invariant is clearly satisfied in the base cases (1.5). Regarding the inductive case, assume

$$
\begin{array}{lll}
\left(I_{1 \mathrm{~L}}\right) \varphi \wedge \neg(p \vee \eta) \vDash \xi & \text { and } & \left(I_{2 \mathrm{~L}}\right) \xi \vDash \psi \rightarrow(p \vee \eta), \\
\left(I_{1 \mathrm{R}}\right) \varphi \wedge \neg\left(\neg p \vee \eta^{\prime}\right) \vDash \xi^{\prime} & \text { and } & \left(I_{2 \mathrm{R}}\right) \xi^{\prime} \vDash \psi \rightarrow\left(\neg p \vee \eta^{\prime}\right) .
\end{array}
$$

In case (1.2), we have to prove

$$
\left(I_{1}\right) \varphi \wedge \neg\left(\eta \vee \eta^{\prime}\right) \vDash \xi \vee \xi^{\prime} \quad \text { and } \quad\left(I_{2}\right) \xi \vee \xi^{\prime} \vDash \psi \rightarrow\left(\eta \vee \eta^{\prime}\right)
$$

In order to prove $\left(I_{1}\right)$, let $\varrho \vDash \varphi \wedge \neg\left(\eta \vee \eta^{\prime}\right)$. If $\varrho(p)=1$, then from $\left(I_{1 R}\right)$ we get $\varrho \vDash \xi^{\prime}$; the other case is similar. In order to prove $\left(I_{2}\right)$, let $\varrho \vDash\left(\xi \vee \xi^{\prime}\right) \wedge \psi$. If $\varrho \vDash \xi$, since p does not appear in ξ, we also have $\varrho[p \mapsto 0] \vDash \xi$, and, by $\left(I_{2 \mathrm{~L}}\right), \varrho[p \mapsto 0] \vDash \eta$, and thus $\varrho \vDash \eta$ since p does not occur in η; the other case $\varrho \vDash \xi^{\prime}$ is similar. In case (1.3), we have to prove

$$
\left(I_{1}\right) \varphi \wedge \neg\left(\eta \vee \eta^{\prime}\right) \vDash \xi \wedge \xi^{\prime} \quad \text { and } \quad\left(I_{2}\right) \xi \wedge \xi^{\prime} \vDash \psi \rightarrow \eta \vee \eta^{\prime}
$$

In order to prove $\left(I_{1}\right)$, let $\varrho \vDash \varphi \wedge \neg\left(\eta \vee \eta^{\prime}\right)$. Since p occurs neither in φ nor in η, the same holds by replacing ϱ with $\varrho[p \mapsto 0]$, resp., $\varrho[p \mapsto 1] \vDash \varphi \wedge \neg \eta$; by $\left(I_{1 \mathrm{~L}}\right),\left(I_{1 \mathrm{R}}\right)$ we obtain $\varrho \vDash \xi \wedge \xi^{\prime}$. In order to prove $\left(I_{2}\right)$, let $\varrho \vDash \xi \wedge \xi^{\prime} \wedge \psi$. By $\left(I_{2 \mathrm{~L}}\right),\left(I_{2 \mathrm{R}}\right)$ and a step of resolution we obtain $\varrho \vDash \eta \vee \eta^{\prime}$, as required. Finally, in case (1.4), we have to prove

$$
\begin{aligned}
& \left(I_{1}\right) \varphi \wedge \neg\left(\eta \vee \eta^{\prime}\right) \vDash(p \vee \xi) \wedge\left(\neg p \vee \xi^{\prime}\right), \text { and } \\
& \left(I_{2}\right)(p \vee \xi) \wedge\left(\neg p \vee \xi^{\prime}\right) \vDash \psi \rightarrow \eta \vee \eta^{\prime}
\end{aligned}
$$

A case analysis on $\varrho(p)$ together with the inductive hypothesis solves also this case.

Chapter 2

First-order predicate logic

2.1 Definability

2.1.1 Real numbers

Solution of Problem 2.1.2. We use the fact that squaring produces nonnegative reals:

$$
\varphi(x, y) \equiv \exists z \cdot x=y+z * z
$$

Solution of Problem 2.1.3 "Periodicity". Let $\varphi(x)$ be a first-order formula of one free variable saying that x is a period of f :

$$
\varphi(x) \equiv \forall y \cdot f(y+x)=f(y)
$$

The required property is expressed as

$$
\varphi(1) \wedge \forall x . x>0 \wedge \varphi(x) \rightarrow x=1
$$

Strictly speaking, " $x>0$ " is not an atomic formula in the signature we are considering. However, it is first-order expressible as we have seen in Problem 2.1.2.

Solution of Problem 2.1.4 "Continuity and uniform continuity". We express continuity as $\lim _{y \rightarrow x} f(y)=f(x)$ for every x :

$$
\varphi \equiv \forall x . \forall \varepsilon>0 . \exists \delta>0 . \forall y .|y-x| \leq \delta \rightarrow|f(y)-f(x)| \leq \varepsilon .
$$

We have used the following custom notational conventions:

$$
\begin{array}{ll}
\forall \varepsilon>0 . \psi & \text { stands for } \forall \varepsilon . \varepsilon>0 \rightarrow \psi, \text { and } \\
\exists \delta>0 . \psi & \text { stands for } \exists \delta . \delta>0 \wedge \psi .
\end{array}
$$

Strictly speaking, the subtraction operation " _ _ " and the absolute value function "|_" are not in the signature we are considering. However, we can rewrite " $|y-x| \leq \delta$ " as

$$
(y \geq x \rightarrow y \leq \delta+x) \wedge(y<x \rightarrow x \leq \delta+y)
$$

Uniform continuity is the stronger property obtained by pushing the " $\forall x$ " quantifier inside the formula:

$$
\psi \equiv \forall \varepsilon>0 . \exists \delta>0 . \forall x, y .|y-x| \leq \delta \rightarrow|f(y)-f(x)| \leq \varepsilon .
$$

Solution of Problem 2.1.5 "Differentiability". Let $g(x, \delta)=\frac{f(x+\delta)-f(x)}{\delta}$. We express that $\lim _{\delta \rightarrow 0} g(x, \delta)$ exists:

$$
\varphi(x) \equiv \exists y . \forall \varepsilon>0 . \exists \delta>0 . \forall(0<z<\delta) .|g(z)-y| \leq \varepsilon
$$

As in the previous exercise, we can rewrite " $|g(z)-y| \leq \varepsilon$ " in order to use only symbols from the signature.

2.1.2 Cardinality constraints

Solution of Problem 2.1.6 "Cardinality constraints I". Let $\varphi_{\geq n}$ be the existential sentence

$$
\varphi_{\geq n} \equiv \exists x_{1} \cdots \exists x_{n} \cdot \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j} .
$$

It is clear that $\varphi_{\geq n}$ satisfies the required property. There is no universal sentence ψ with the same property, since for any universal sentence ψ, $\mathfrak{A} \vDash \psi$ implies $\mathfrak{B} \vDash \psi$ for every submodel \mathfrak{B} of \mathfrak{A}, which in particular implies that we can take \mathfrak{B} with less than n elements.

Solution of Problem 2.1.7 "Cardinality constraints II". Let $\varphi_{\geq n}$ any (existential) sentence satisfying the requirements of Problem 2.1.6 "Cardinality constraints I". Then, $\varphi_{\leq n} \equiv \neg \varphi_{\geq n+1}$ is a universal sentence constraining the cardinality of the model to be $\not \nexists n+1$, i.e., $\leq n$ as required. There is no existential such $\varphi_{\leq n}$ because any finite model of an existential sentence can be extended to a model of larger finite cardinality by adding spurious elements.

2.1.3 Characteristic sentences

Solution of Problem 2.1.8 "Characteristic sentences". W.l.o.g. we prove the claim for a relational structure $\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}\right)$ with domain $A=$ $\left\{a_{1}, \ldots, a_{m}\right\}$. For every relation $R_{i}^{\mathfrak{A}} \subseteq A^{n_{i}}$, let its characteristic sentence be

$$
\begin{aligned}
\delta_{i}\left(x_{1}, \ldots, x_{m}\right) \equiv & \bigwedge\left\{R_{i}\left(x_{j_{1}}, \ldots, x_{j_{n_{i}}}\right) \mid\left(a_{j_{1}}, \ldots, a_{j_{n_{i}}}\right) \in R_{i}^{\mathfrak{A}}\right\} \wedge \\
& \bigwedge\left\{\neg R_{i}\left(x_{j_{1}}, \ldots, x_{j_{n_{i}}}\right) \mid\left(a_{j_{1}}, \ldots, a_{j_{n_{i}}}\right) \in A^{n_{i}} \backslash R_{i}^{\mathfrak{A}}\right\} .
\end{aligned}
$$

The sentence $\delta_{\mathfrak{A}}$ states that there are precisely n pairwise distinct elements in the model x_{1}, \ldots, x_{n} satisfying precisely all relations $R_{1}^{\mathfrak{A}}, \ldots, R_{n}^{\mathfrak{A}}$:

$$
\delta_{\mathfrak{A}} \equiv \exists x_{1} \cdots \exists x_{m} \cdot \bigwedge_{1 \leq i<j \leq m} x_{i} \neq x_{j} \wedge \forall y \cdot \bigvee_{1 \leq i \leq m} y=x_{i} \wedge \bigwedge_{1 \leq i \leq n} \delta_{i}\left(x_{1}, \ldots, x_{m}\right)
$$

2.1.4 Miscellanea

Solution of Problem 2.1.9 "Binary trees". Let $\psi_{n}(x)$ express that x is located at depth n from the root, and similarly for $\xi_{n}(y)$. In the base case, we have

$$
\begin{aligned}
\psi_{0}(x) & \equiv \neg \exists y \cdot L(y, x) \vee R(y, x), \text { and } \\
\xi_{0}(y) & \equiv \neg \exists x \cdot L(x, y) \vee R(x, y),
\end{aligned}
$$

and in the inductive case,

$$
\begin{aligned}
\psi_{n+1}(x) & \equiv \exists y \cdot(L(y, x) \vee R(y, x)) \wedge \xi_{n}(y), \text { and } \\
\xi_{n+1}(y) & \equiv \exists x \cdot(L(x, y) \vee R(x, y)) \wedge \psi_{n}(x) .
\end{aligned}
$$

Finally, we define

$$
\varphi_{n} \equiv \forall x \cdot(\exists y \cdot L(x, y)) \wedge(\exists y \cdot R(x, y)) \vee \psi_{n}(x) .
$$

Solution of Problem 2.1.10 "Conway's "Game of Life"". As a warm-up, we observe that we can express $x=_{i} y$ as $x \leq_{i} y \wedge y \leq_{i} x$, and $x<_{i} y$ as $x \leq_{i} y \wedge \neg\left(x==_{i} y\right)$. We can express $x-y \leq_{i} 1$ as

$$
x={ }_{i} y \vee y<_{i} x \wedge \forall\left(z<_{i} x\right) . z \leq_{i} y
$$

and $|x-y| \leq_{i} 1$ as

$$
y \leq_{i} x \wedge x-y \leq_{i} 1 \vee x \leq_{i} y \wedge y-x \leq_{i} 1
$$

We can write a formula of two free variables $\varphi(x, y) \equiv x \neq y \wedge|x-y| \leq_{1}$ $1 \wedge|x-y| \leq_{2} 1$ stating that x and y are neighbours. We can say that x has exactly three alive neighbours at time k as

$$
\begin{aligned}
\psi_{k, 3}(x) \equiv & \exists y_{1}, y_{2}, y_{3} \cdot y_{1} \neq y_{2} \wedge y_{1} \neq y_{3} \wedge y_{2} \neq y_{3} \wedge \\
& \varphi_{k}\left(y_{1}\right) \wedge \varphi_{k}\left(y_{2}\right) \wedge \varphi_{k}\left(y_{3}\right) \wedge \\
& \varphi\left(x, y_{1}\right) \wedge \varphi\left(x, y_{2}\right) \wedge \varphi\left(x, y_{3}\right) \wedge \\
& \forall y \cdot \varphi_{k}(y) \wedge \varphi(x, y) \rightarrow y=y_{1} \vee y=y_{2} \vee y=y_{3}
\end{aligned}
$$

A formula $\psi_{k, 2,3}(x)$ stating that x has two or three living neighbours can be written in a similar fashion.

We are now ready to define $\varphi_{k}(x)$. We proceed by induction on k. For the base case $k=0$ we have directly $\varphi_{0}(x) \equiv U(x)$. For the inductive case $k>0$, we have

$$
\varphi_{k}(x) \equiv \neg \varphi_{k-1}(x) \wedge \psi_{k, 3}(x) \vee \varphi_{k-1}(x) \wedge \psi_{k, 2,3}(x)
$$

2.2 Normal forms

Solution of Problem 2.2.1 "Negation normal form". We use the following tautologies to transform the given formula into NNF. Each tautology must be read as a left-to-right rewrite rule. First, remove the connectives " \rightarrow " and " \leftrightarrow " by expanding their definition:

$$
\begin{aligned}
(\varphi \leftrightarrow \psi) & \leftrightarrow(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) \\
(\varphi \rightarrow \psi) & \leftrightarrow \neg \varphi \vee \psi
\end{aligned}
$$

Then, push negations inside to the atomic formulas using De Morgan's laws:

$$
\begin{aligned}
\neg(\varphi \wedge \psi) & \leftrightarrow \neg \varphi \vee \neg \psi, \\
\neg(\varphi \vee \psi) & \leftrightarrow \neg \varphi \wedge \neg \psi, \\
\neg \forall x . \varphi & \leftrightarrow \exists x \cdot \neg \varphi, \\
\neg \exists x . \varphi & \leftrightarrow x . \neg \varphi .
\end{aligned}
$$

Solution of Problem 2.2.2 "Prenex normal form". By Problem 2.2.1"Negation normal form", we assume the formula is in NNF. We transform the formula to PNF by pulling out the quantifiers:

$$
\begin{array}{ll}
(\forall x . \varphi) \wedge \psi \leftrightarrow \forall x . \varphi \wedge \psi, & (\text { if } x \notin F V(\psi)) \\
(\forall x . \varphi) \vee \psi \leftrightarrow \forall x . \varphi \vee \psi, & \text { (if } x \notin F V(\psi)) \\
(\exists x . \varphi) \wedge \psi \leftrightarrow \exists x . \varphi \wedge \psi, & \text { (if } x \notin F V(\psi)) \\
(\exists x . \varphi) \vee \psi \leftrightarrow \exists x . \varphi \vee \psi, & \text { (if } x \notin F V(\psi))
\end{array}
$$

Sometimes fresh variable rename is necessary in order to allow the quantifiers to be pulled out:

$$
\forall x . \varphi \leftrightarrow \forall y \cdot \varphi[x \mapsto y] . \quad \text { (if } y \notin F V(\varphi))
$$

Solution of Problem 2.2.3. Let U be a unary symbol and consider the following rank 1 sentence:

$$
\varphi \equiv(\exists x . U(x)) \wedge \exists x . \neg U(x)
$$

By way of contradiction, assume that a logically equivalent formula ψ of $\operatorname{rank}(\psi)=1$ exists. The formula ψ must be either of the form $\exists x . \xi(x)$ or $\forall x . \xi(x)$, with ξ quantifier-free. Observe that φ is true in a model with two elements, and has no one-element model. If $\exists x . \xi(x)$ is true in a two-element model $\mathfrak{A}=\left(\{a, b\}, U^{\mathfrak{A}}\right)$ under valuation $x: a$, then it is also true in the one-element submodel $\left.\mathfrak{A}\right|_{\{a\}}$. Hence this sentence cannot be equivalent to φ. If $\forall x . \xi(x)$ is true in a two-element model \mathfrak{A} as above, then it is also true in both its single-element submodels $\left.\mathfrak{A}\right|_{\{a\}}$ and $\left.\mathfrak{A}\right|_{\{b\}}$, because truth of universal sentences is preserved under submodels. Hence this sentence cannot be equivalent to φ, either.

Solution of Problem 2.2.4. This is not the case. For a given finite signature Σ and fixed number of free variables $k \in \mathbb{N}$, there are only finitely many quantifier-free formulas up to logical equivalence. By Problem 2.2.2 "Prenex normal form", a sentence of size n and rank k can be written in PNF with rank $O(k \cdot n)$, and thus there are also finitely many sentences of rank k up to logical equivalence. It suffices to construct any infinite sequence of pairwise inequivalent sentences $\varphi_{1}, \varphi_{2}, \ldots$. For instance, one can take the empty signature $\Sigma=\varnothing$ and the cardinality lower-bound constraints from Problem 2.1.6 "Cardinality constraints I".

2.3 Satisfaction relation

Solution of Problem 2.3.1. The first formula $\varphi(x)$ is satisfied precisely in those structures containing at least two elements. The second formula ψ is not satisfied in any structure, i.e., it is not satisfiable. This shows that in order to preserve the meaning of a formula substitution must avoid capturing free variables.

Solution of Problem 2.3.2. Take $\mathfrak{A}=\left(\{a\}\right.$, $\left.\mathrm{id}^{\mathfrak{A}}, \mathrm{id}^{\mathfrak{A}}\right), \rho^{\mathfrak{A}}(x)=a$ and $\mathfrak{B}=$ $\left(\mathbb{N},(+1)^{\mathfrak{B}},<{ }^{\mathfrak{B}}\right), \rho^{\mathfrak{B}}(x)=0$.

Solution of Problem 2.3.3. The formula φ_{1} is a tautology, hence satisfiable (the l.h.s. is the skolemisation of the r.h.s.). The formula φ_{2} (which is the converse of φ_{1}) is not a tautology: suppose P is everywhere false; then the l.h.s. says that $Q(y)$ is true for some y, and the r.h.s. says that Q holds on the codomain of f, but there are choices of f s.t. $Q(f(x))$ is false and $f(x) \neq y$. However, φ_{2} is satisfiable: It suffices to choose a model where the l.h.s. does not hold, such as Q never holds and P holds somewhere. The formula φ_{3} is the complement of φ_{1} and thus not satisfiable (and hence not a tautology). The formula φ_{4} is a tautology.

Solution of Problem 2.3.4. Let $\mathfrak{A}=\left(A, R^{\mathfrak{A}}\right)$ be a model of φ. Then, $R^{\mathfrak{A}} \subseteq$ $A \times A$ is a total, irreflexive, and transitive relation. We show, by induction on n, that A contains an R-chain of $n+1$ pairwise distinct elements, for every $n \in \mathbb{N}$:

$$
a_{0} R a_{1} R a_{2} \cdots a_{n-1} R a_{n}
$$

For $n=0$, the trivial chain composed just of a_{0} exists because models are nonempty. Assume we have a chain of size $n+1$ as above, and we show how to extend it to a chain of size $n+2$. By totality, there exists an element a_{n+1} s.t. $a_{n} R a_{n+1}$. Consider any a_{i} with $0 \leq i \leq n$. By transitivity, $a_{i} R a_{n+1}$, and by irreflexivity $a_{i} \neq a_{n+1}$. Thus, all the elements of the new chain are pairwise distinct. Thus, A contains arbitrarily large chains of pairwise distinct elements, and therefore must be infinite.

Solution of Problem 2.3.5. 1. We express that f is one-to-one, but not onto: $\forall x, y .(f(x)=f(y) \rightarrow x=y) \wedge \exists x . \forall y . x \neq f(y)$.
2. We can express that $R(x, y)$ is functional and fall back in the previous case. Alternatively, we can express that R is a partial order without maximal elements.

Solution of Problem 2.3.6. The premise says that f is injective and the conclusion that f is surjective. In any model $\mathfrak{A}=\left(A, f^{\mathfrak{A}}\right)$ of $\neg \varphi$ the function $f^{\mathfrak{A}}: A \rightarrow A$ is injective but not surjective. Consequently, the codomain of $f^{\mathfrak{A}}$ is a strict subset of A, i.e., $f^{\mathfrak{A}}(A) \mp A$. Only infinite sets A admit an injection to a strict subset thereof. Thus, there are no finite models of $\neg \varphi$.

Solution of Problem 2.3.7. Let $\mathfrak{A}=\left(A, f^{\mathfrak{A}}\right)$ be a structure. Then, $\mathfrak{A} \vDash \neg \varphi$ holds precisely when $f^{\mathfrak{A}}: A \times A \rightarrow A$ is injective. For instance, taking the one-element domain $A=\{a\}$ with $f^{\mathfrak{A}}(a, a)=a$ (uniquely defined by A) makes $f^{\mathfrak{A}}$ injective. More generally, if A is of finite cardinality $|A|=n>0$, then the existence of an injection from $A \times A$ to A would imply $n^{2} \leq n$, and this is possible only if $n=1$. Thus, there are no other non-isomorphic finite models of $\neg \varphi$.

For the second point, ψ is still not a tautology, and by the discussion above any model of $\neg \psi$ must be infinite. For example, it suffices to consider $\mathfrak{A}=\left(\mathbb{N}, f^{\mathfrak{A}}\right)$ where $f^{\mathfrak{A}}$ is any injection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}, such as the Cantor's pairing function $f^{\mathfrak{A}}(m, n)=\frac{(m+n)(m+n+1)}{2}+n$.

Solution of Problem 2.3.8. Six. By the first condition there are at least two distinct vertices $a, b \in A$ in the graph. By the second condition the edge relation $E^{\mathfrak{A}}$ is irreflexive, i.e., there are no self-loops. By the third condition,
distinct vertices a, b share a common neighbour c, which distinct by the previous condition. Thus A has at least three vertices, and by repeatedly applying the third condition we obtain six edges.

Solution of Problem 2.3.9. Let $\varphi \equiv \exists x_{1} \cdots \exists x_{n} . \psi$ be an existential formula, with ψ quantifier-free. Consider first the case when the signature of φ consists only of relations R_{1}, \ldots, R_{m}. Let $\mathfrak{A}=\left(A, R_{1}^{\mathfrak{A}}, \ldots, R_{m}^{\mathfrak{A}}\right)$ be a model of φ. There exist $a_{1}, \ldots, a_{n} \in A$ s.t.

$$
\mathfrak{A}, x_{1}: a_{1}, \ldots, x_{n}: a_{n} \vDash \psi .
$$

Consequently,

$$
\left.\mathfrak{A}\right|_{\left\{a_{1}, \ldots, a_{n}\right\}}, x_{1}: a_{1}, \ldots, x_{n}: a_{n} \vDash \psi
$$

and thus $\left.\mathfrak{A}\right|_{\left\{a_{1}, \ldots, a_{n}\right\}}$ is a finite model of φ. Moreover, if B is any infinite set, then $\mathfrak{B}=\left(A \cup B, R_{1}^{\mathfrak{A}}, \ldots, R_{m}^{\mathfrak{A}}\right)$ is an infinite model of φ.

Now let us consider the case when the signature of φ contains function symbols f_{1}, \ldots, f_{l}, and let $\mathfrak{A}=\left(A, f_{1}^{\mathfrak{A}}, \ldots, f_{l}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{m}^{\mathfrak{A}}\right)$ be a model of φ, where $f_{i}^{\mathfrak{A}}: A^{\alpha_{i}} \rightarrow A$ and $R_{j}^{\mathfrak{A}} \subseteq A^{\beta_{j}}$. As before, there exist $a_{1}, \ldots, a_{n} \in A$ defining a valuation $\rho=\left(x_{1}: a_{1}, \ldots, x_{n}: a_{n}\right)$ s.t.

$$
\mathfrak{A}, \rho \vDash \psi .
$$

There are two cases to consider, depending on whether \mathfrak{A} is infinite or finite.

If \mathfrak{A} is infinite, then we only need to create a finite model for φ. Let t_{1}, \ldots, t_{k} be all terms appearing in ψ, and let $A^{\prime}=\left\{\llbracket t_{1} \rrbracket_{\rho}^{\mathfrak{A}}, \ldots, \llbracket t_{k} \rrbracket_{\rho}^{\mathfrak{H}}\right\} \subseteq A$ be the finite set of all elements of A which are values of terms appearing in ψ under the valuation ρ. We assume w.l.o.g. that every variable x_{i} appears in ψ, and thus $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A^{\prime}$. Let $\hat{a} \in A \backslash A^{\prime}$ be some fresh element of A, and consider the new model

$$
\mathfrak{B}=\left(B, f_{1}^{\mathfrak{B}}, \ldots, f_{l}^{\mathfrak{B}}, R_{1}^{\mathfrak{B}}, \ldots, R_{m}^{\mathfrak{B}}\right)
$$

where $B=A^{\prime} \cup\{\hat{a}\}$,

- $f_{i}^{\mathfrak{B}}$ is obtained $f_{i}^{\mathfrak{A}}$ by assigning it the "default value" \hat{a} whenever $f_{i}^{\mathfrak{A}}$ is not in $B: f_{i}^{\mathfrak{B}}\left(b_{1}, \ldots, b_{\alpha_{i}}\right)=f_{i}^{\mathfrak{A}}\left(b_{1}, \ldots, b_{\alpha_{i}}\right)$ if the latter value is in B, and $f_{i}^{\mathfrak{B}}\left(b_{1}, \ldots, b_{\alpha_{i}}\right)=\hat{a}$ otherwise.
- $R_{j}^{\mathfrak{B}}=\left.R_{j}^{\mathfrak{H}}\right|_{B^{\beta_{j}}}$ is simply obtained by restricting $R_{j}^{\mathfrak{A}}$ to the new domain B.

It is clear that $\mathfrak{B}, \rho \vDash \psi$, and hence $\mathfrak{B} \vDash \varphi$.
If \mathfrak{A} is finite, then we only need to create an infinite model for φ. This time let the universe of the new model \mathfrak{B} be $A \cup B$, where B is an infinite set, the interpretations of relations remain unaltered, and the interpretations of functions be extended to become total by assigning arbitrary values from $B \backslash A$. It is again clear that $\mathfrak{B}, \rho \vDash \psi$ and thus $\mathfrak{B} \vDash \varphi$.

Solution of Problem 2.3.10. For the first point, the required sentence is $\varphi_{1} \equiv \forall x \forall y . x=y$. For the second point, an initial idea may be to axiomatise an strict total order < with no maximal element:

$$
\begin{align*}
& \forall x \cdot \neg(x<x), \tag{A1}\\
& \forall x \forall y \forall z \cdot x<y \wedge y<z \rightarrow x<z, \tag{A2}\\
& \forall x \forall y \cdot x<y \vee y<x \vee x=y, \tag{A3}\\
& \forall x \exists y . x<y . \tag{A4}
\end{align*}
$$

However, the last axiom is problematic because it is not a universal sentence. (A similar idea is to axiomatise that < is dense, but this also requires a non-universal sentence). By introducing a unary function symbol f, we can replace (A4) by

$$
\begin{equation*}
\forall x . x<f(x) . \tag{A5}
\end{equation*}
$$

The conjunction of (A1)-(A3) and (A5) provides the sought universal sentence φ_{2}.

Solution of Problem 2.3.11 "Constructibility". No, in general existential witnesses may not be constructible. Consider the trivial structure $\mathfrak{A}=(\{a\})$ (so that no element is constructible) and the formula $\exists x . x=x$. Clearly a is a witness for x, but it is not constructible in the language of \mathfrak{A} (which is empty).

2.4 Skolemisation

Solution of Problem 2.4.1. Let $\psi \equiv \forall x \exists y . \varphi$ and $\xi \equiv \forall x . \varphi[y \mapsto f(x)]$. The "if" direction is immediate: If ξ is satisfiable, then there exists a model
$\mathfrak{A}=\left(A, f^{\mathfrak{A}}\right)$ with domain A and $f^{\mathfrak{A}}: A \rightarrow A$, and an evaluation $\rho: X \rightarrow A$ for the free variables of φ s.t. $\mathfrak{A}, \rho \vDash \xi$. By definition, $\mathfrak{A}=(A)$ (omitting $f^{\mathfrak{A}}$) is a model for ψ.

The other direction is harder. Let $\mathfrak{A}=(A)$ be a structure with domain A and let $\rho: X \rightarrow A$ be a variable valuation s.t.

$$
\mathfrak{A}, \rho \vDash \psi .
$$

For each $a \in A$, there exists $b_{a} \in A$ (depending on a) s.t.

$$
\mathfrak{A}, \rho[x \mapsto a]\left[y \mapsto b_{a}\right] \vDash \varphi .
$$

Let us define a new model $\mathfrak{B}=\left(A, f^{\mathfrak{B}}\right)$ by setting $f^{\mathfrak{B}}(a)=b_{a}$ for every $a \in A$. Since f does not occur in φ, we trivially have, for every $a \in A$,

$$
\mathfrak{B}, \rho[x \mapsto a]\left[y \mapsto b_{a}\right] \vDash \varphi .
$$

Since $\llbracket f(x) \rrbracket_{\rho[x \mapsto a]}^{\mathfrak{B}}=f^{\mathfrak{B}}(a)=b_{a}$, by the "if" direction of Lemma 2.0.1 "Substitution lemma",

$$
\mathfrak{B}, \rho[x \mapsto a] \vDash \varphi[y \mapsto f(x)] .
$$

Since a was arbitrary, we obtain

$$
\mathfrak{B}, \rho \vDash \forall x . \varphi[y \mapsto f(x)] .
$$

Thus, $\forall x . \varphi[y \mapsto f(x)]$ is satisfiable.
The first assumption is necessary: Consider $\forall x \exists y . \varphi$ where $\varphi \equiv y \neq$ $f(x)$, which is satisfiable, while $\forall x . \varphi[y \mapsto f(x)] \equiv \forall x . f(x) \neq f(x)$ is no longer satisfiable.

The second assumption is also necessary: Consider $\psi \equiv \forall x \exists y . \varphi$, where

$$
\varphi \equiv \forall x \cdot x=y \wedge \exists x \exists y . x \neq y
$$

(Notice that the first universal quantifier " $\forall x$ " in ψ does not bind any variable.) The first conjunct of ψ says that the model has exactly one element, while the second one says that the model has at least two elements. Thus, ψ is unsatisfiable. However, $\forall x . \varphi[y \mapsto f(x)]$ equals

$$
\forall x \cdot x=f(x) \wedge \exists x \exists y . x \neq y
$$

which is clearly satisfiable by taking $f^{\mathfrak{A}}$ to be the identity function.

2.5 Herbrand models

Solution of Problem 2.5.2 "Herbrand's theorem". The "if" direction is trivial. For the "only if direction", let \mathfrak{A} be a model. Let \mathfrak{H} be the Herbrand structure uniquely defined by

$$
R_{i}^{\mathfrak{H}}(\bar{u}) \quad \text { if, and only if, } \quad \mathfrak{A} \vDash R_{i}(\bar{u}) .
$$

We show that \mathfrak{H} is a model for the sentence $\varphi \equiv \forall x_{1}, \ldots, x_{n} . \psi$ whenever \mathfrak{A} is a model for φ. We proceed by induction on the number n of universal quantifiers. In the base case $n=0, \varphi$ is a variable-free sentence, and thus it is a Boolean combination of atomic sentences of the form $R_{i}(\bar{u})$. Then $R_{i}^{\mathfrak{H}}(\bar{u})$ holds by construction of \mathfrak{H}, and thus $\mathfrak{H} \vDash \varphi$, in this case. For the inductive step $n>0$, assume $\mathfrak{A} \vDash \varphi$ with $\varphi \equiv \forall x . \psi$. For every ground term t we have $\mathfrak{A}, x: t \vDash \psi$, and thus by Lemma 2.0.1 "Substitution lemma", $\mathfrak{A} \vDash \psi[x \mapsto t]$. Since $\psi[x \mapsto t]$ has $n-1$ universal quantifiers, by the inductive assumption (applied countably many times!) $\mathfrak{H} \vDash \psi[x \mapsto t]$. Since t was arbitrary and there are no other elements in the Herbrand universe $H, \mathfrak{H} \vDash \forall x . \psi$, as required.

This fails for non-universal sentences. Consider the non-universal sentence $P(0) \wedge \exists x . \neg P(x)$, which is satisfied only in models of size ≥ 2. However, the Herbrand universe over the signature consisting of a single zero-ary constant " 0 " is $H=\{0\}$ and thus has size 1 .

Solution of Problem 2.5.3. The "if" direction is trivial. For the "only if" direction, assume that φ is unsatisfiable. Let $\bar{u}_{1}, \bar{u}_{2}, \ldots$ be any enumeration of n-tuples of elements of the Herbrand universe (terms), and consider the set of ground formulas

$$
\Gamma=\left\{\psi\left[\bar{x} \mapsto \bar{u}_{1}\right], \psi\left[\bar{x} \mapsto \bar{u}_{2}\right], \ldots\right\} .
$$

Towards reaching a contradiction, assume that every finite subset of Γ is satisfiable. By Problem 2.9.1 "Compactess theorem", Γ is satisfiable, and thus it has a model \mathfrak{A}. By Problem 2.5.2 "Herbrand's theorem", it has a Herbrand model \mathfrak{H}. By the definition of Γ, it follows that \mathfrak{H} is a model for φ, which is a contradiction.

2.6 Logical consequence

Solution of Problem 2.6.1. Yes. The first sentence is logically equivalent to $\forall x . f(g(x))=g(f(x))$, and thus the second sentence follows from this fact.

Solution of Problem 2.6.2. Yes, because $f^{11}(x)=f^{2}\left(f^{2}\left(f^{7}(x)\right)\right)$.

2.6.1 Independence

Solution of Problem 2.6.4. Let φ be the reflexivity axiom. As a model for $\Delta \backslash\{\varphi\}$ consider the two element structure $\mathfrak{A}=\left(\{a, b\}, \approx^{\mathfrak{A}}\right)$ with $\approx^{\mathfrak{A}}=\{(b, b)\}$. Clearly " $\approx \mathfrak{A}$ " is symmetric and transitive, however it is not reflexive since $a \not \ddot{z}^{\mathfrak{A}} a$.

For the symmetry axiom, consider $\mathfrak{A}=\left(\{a, b\}, \approx^{\mathfrak{A}}\right)$ with $\approx^{\mathfrak{A}}=\{(a, a),(a, b),(b, b)\}$. The reflexivity and transitivity axioms are satisfied, but symmetry fails, since $a \approx^{\mathfrak{A}} b$ and $b \not \not^{\mathfrak{A}} a$.

Finally, for the transitivity axiom, consider the structure $\mathfrak{A}=\left(\{a, b, c\}, \approx^{\mathfrak{A}}\right.$ $)$ with $\approx^{\mathfrak{A}}=\{(a, a),(b, b),(c, c),(a, b),(b, a),(b, c),(c, b)\}$. The relation " $\approx^{\mathfrak{A}}$ " is reflexive and symmetric, but not transitive since $a \not \not ㇒ ⿻^{\mathfrak{A}} c$.

Solution of Problem 2.6.5. Antisymmetry is violated by any total preorder (i.e., a total, transitive, and reflexive relation) which is not a linear order, such as $\mathfrak{A}=\left(\{a, b\}, \leq^{\mathfrak{A}}\right)$ with $\leq^{\mathfrak{A}}=\{(a, a),(a, b),(b, a),(b, b)\}$.

Transitivity is violated by the following antisymmetric and total relation $\mathfrak{A}=\left(\{a, b, c\}, \leq^{\mathfrak{A}}\right)$ with $\leq^{\mathfrak{A}}=\{(a, a),(b, b),(c, c),(a, b),(b, c),(c, a)\}$.

Finally, totality is violated by any non-total partial order (i.e., a reflexive, antisymmetric, and transitive relation), such as the identity relation on a two-element set: $\mathfrak{A}=(\{a, b\},\{(a, a),(b, b)\})$.

Solution of Problem 2.6.6. We begin by showing independence of the unit axiom. Consider the structure $(\{1,2, \ldots\} \cup\{\infty\},+, \infty)$, where " + " is the standard addition operation on the natural numbers, extended by setting the result to be ∞ if at least one argument is ∞. The addition operation is easily seen to be associative. Inverses do exist in this model, because ∞ is the inverse of any number. However, ∞ is not a unit.

Next, we show independence of the associativity axiom. Let $(\mathbb{R}, *, 1)$ be the multiplicative group of real numbers. It satisfies all three axioms. Now modify it to \mathbb{R}^{\prime} by setting $2 *^{\prime} 2=5$. The axioms asserting the existence of a unit and of inverses are unaffected, because they depend only on multiplications which involve 1 , either as an argument or as the result. However, associativity fails: $3 \star^{\prime}\left(2 *^{\prime} 2\right)=15 \neq 12=\left(3 *^{\prime} 2\right) *^{\prime} 2$.

Independence of the inverses axiom can be seen by taking any monoid which is not a group, such as the free monoid $\mathfrak{A}=\left(\{a\}^{*}, \cdot, \varepsilon\right)$ of finite words over a single-letter alphabet.

Solution of Problem 2.6.7. Consider the following procedure:
$\Delta_{0}:=\Delta ;$
$i:=0$;
while Δ_{i} is not independent
choose $\varphi \in \Delta_{i}$ such that $\Delta_{i} \backslash\{\varphi\} \vDash \varphi ;$
$\Delta_{i+1}:=\Delta_{i} \backslash\{\varphi\} ;$
$i:=i+1$;
end
The loop preserves the invariant that every sentence φ that is removed from Δ_{i} is a logical consequence of Δ_{i+1}. Moreover, the loop terminates at some finite index $n \leq|\Delta|$, and after it does so, Δ_{n} is independent.

The finiteness assumption is necessary: For example, consider the infinite set of sentences $\Delta=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ where $\varphi_{n} \equiv \exists x_{1} \cdots \exists x_{n} . \wedge_{1 \leq i<j \leq n} x_{i} \neq$ x_{j} asserts that there are at least n elements in the model. If Δ^{\prime} is an infinite subset of Δ, then Δ^{\prime} is not independent since every $\varphi_{n} \in \Delta^{\prime}$ is a logical consequence of some $\varphi_{m} \in \Delta^{\prime} \backslash\left\{\varphi_{n}\right\}$ with $m>n$. If Δ^{\prime} is a finite subset of Δ, then $\Delta^{\prime} \not \neq \Delta$, since Δ^{\prime} has a finite model, but Δ has only infinite models.

Solution of Problem 2.6.8. Let $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be any set of axioms, which we can assume to be countable since the signature is finite. We can assume w.l.o.g. that $\varphi_{i+1} \vDash \varphi_{i}$ for every $i \in \mathbb{N}$ (consider $\left\{T, \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \ldots\right\}$), and by removing adjacent equivalent formulas we can also assume $\varphi_{i} \neq \varphi_{i+1}$. Consider the following set of sentences

$$
\Delta=\left\{\varphi_{1}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{2} \rightarrow \varphi_{3}, \ldots\right\}
$$

By compactness, it suffices to prove that each finite subset $\Delta_{n}=\left\{\varphi_{1}, \varphi_{1} \rightarrow\right.$ $\left.\varphi_{2}, \ldots, \varphi_{n-1} \rightarrow \varphi_{n}\right\} \subseteq_{\text {fin }} \Delta$ is independent. Assume by way of contradiction that there is $1 \leq i \leq n$ s.t.

$$
\Delta_{n} \backslash\left\{\varphi_{i-1} \rightarrow \varphi_{i}\right\} \vDash \varphi_{i-1} \rightarrow \varphi_{i} .
$$

Since by assumption $\varphi_{i-1} \not \vDash \varphi_{i}$, there exists a model \mathcal{A} s.t. $\mathcal{A} \vDash \varphi_{i-1}$ and $\mathcal{A} \not \vDash \varphi_{i}$. Consequently, $\mathcal{A} \vDash \Delta_{n} \backslash\left\{\varphi_{i-1} \rightarrow \varphi_{i}\right\}$, and thus it would follow $\mathcal{A} \vDash \varphi_{i}$, which is a contradiction.

2.7 Axiomatisability

Solution of Problem 2.7.2 "Classes of finite structures are axiomatisable". Let $\mathcal{A}=\left\{\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots\right\}$ be a countable class of finite structures \mathfrak{A}_{n} 's, and let \mathcal{B} be the class of finite structures over Σ not in \mathcal{A}. The class $\mathcal{B}=\left\{\mathfrak{B}_{0}, \mathfrak{B}_{1}, \ldots\right\}$ is also countable. Let φ_{i} be the characteristic sentence of \mathfrak{B}_{i}. Then \mathcal{A} is axiomatised by

$$
\left\{\neg \varphi_{0}, \neg \varphi_{1}, \ldots\right\}
$$

Solution of Problem 2.7.3 "Universal axiomatisations". By Problem 2.11.3 "Fundamental property", universal sentences are preserved by induced substructures, and thus if Γ is a set of universal sentences and $\mathfrak{A} \vDash \Gamma$, then also $\mathfrak{B} \vDash \Gamma$ whenever \mathfrak{B} is an induced substructure of \mathfrak{A}. Thus, if \mathcal{A} can be axiomatised by a set of universal sentences, then it is closed under induced substructures.

On the other hand, assume $\mathcal{A}=\left\{\mathfrak{A}_{0}, \mathfrak{A}_{1}, \ldots\right\}$ is a set of finite relational structures closed under induced substructures. We can use the method of Problem 2.7.2 "Classes of finite structures are axiomatisable" and construct a universal axiomatisation. The class of structures $\mathcal{B}=\left\{\mathfrak{B}_{0}, \mathfrak{B}_{1}, \ldots\right\}$ over the same signature not in \mathcal{A} is closed under induced superstructures, i.e., adding elements to the domain and possibly extending the relations on these new elements. The characteristic sentence φ_{i} of \mathfrak{B}_{i} contains both existential and universal quantifiers. We remove the universal part " $\forall y . \bigvee_{1 \leq i \leq m} y=x_{i}$ " and obtain an existential sentence $\hat{\varphi}_{i}$ s.t. $\mathfrak{B}_{i} \vDash \hat{\varphi}_{i}$, and, thanks to the closure property of \mathcal{B}, all models of $\hat{\varphi}_{i}$ are in \mathcal{B}. Consequently, $\left\{\neg \hat{\varphi}_{1}, \neg \hat{\varphi}_{2}, \ldots\right\}$ is a universal axiomatisation for \mathcal{A}.

Figure for Problem 2.8.3 "Even numbers".

2.8 Spectrum

2.8.1 Examples

Solution of Problem 2.8.2 "Finite and cofinite sets are spectra". Let $N=$ $\left\{n_{1}, \ldots, n_{k}\right\} \subseteq \mathbb{N}_{>0}$ be a finite set of non-zero natural numbers. By using the counting sentences $\varphi_{=i} \equiv \varphi_{\leq i} \wedge \varphi_{\geq i}$ from Problem 2.1.6 "Cardinality constraints I" and Problem 2.1.7 "Cardinality constraints II", it is easily seen that N, resp., its complement $N^{c}:=\mathbb{N}_{>0} \backslash N$, is the spectrum of the sentence

$$
\varphi_{N} \equiv \varphi_{=n_{1}} \vee \cdots \vee \varphi_{=n_{k}}, \text { resp., } \varphi_{N^{c}} \equiv \neg \varphi_{=n_{1}} \wedge \cdots \wedge \neg \varphi_{=n_{k}}
$$

(Note that φ_{N} is a $\exists \forall$-sentence using only relational symbols (the equality relations). Problem 2.8.23 "Spectra of $\exists \forall$-sentences" asks to show that the spectra of such sentences are always either finite or co-finite.)

Solution of Problem 2.8.3 "Even numbers". Let U be a unary relation symbol, f a unary function symbol, and consider the following sentence:

$$
\begin{aligned}
& \forall x \cdot U(f(x)) \wedge \\
& \forall y \cdot U(y) \rightarrow \exists x_{1} \exists x_{2} \cdot x_{1} \neq x_{2} \wedge f\left(x_{1}\right)=y \wedge f\left(x_{2}\right)=y \wedge \\
& \quad \forall x \cdot f(x)=y \rightarrow x=x_{1} \vee x=x_{2} .
\end{aligned}
$$

The first sentence says that U includes the image of f, and the second one says that for every y such that $U(y)$ holds, y is the value of f for exactly two distinct arguments x_{1}, x_{2}. Together, they guarantee that the universe has exactly twice as many elements as $U^{\mathfrak{Z}}$. The construction of a model with an arbitrary fixed cardinality of U is obvious.

Another solution using only a single unary function f is presented in Problem 2.8.19 "Spectra with a unary function".

Solution of Problem 2.8.4. We use a unary relation symbol U and a binary function symbol f. Consider the following sentence:

$$
\begin{aligned}
& \forall z \exists x \exists y \cdot U(x) \wedge U(y) \wedge f(x, y)=z \wedge \\
& \forall x_{1} \forall x_{2} \forall y_{1} \forall y_{2} \cdot U\left(x_{1}\right) \wedge U\left(x_{2}\right) \wedge U\left(y_{1}\right) \wedge U\left(y_{2}\right) \wedge \\
& \quad f\left(x_{1}, y_{1}\right)=f\left(x_{1}, y_{1}\right) \rightarrow x_{1}=x_{2} \wedge y_{1}=y_{2} .
\end{aligned}
$$

The first sentence says that f restricted to $U \times U$ is onto the whole universe, and the second one that f restricted to $U \times U$ is one-to-one. Consequently, the whole domain is of the same cardinality as $U \times U$. Again, the construction of a model with an arbitrary fixed cardinality of U is obvious.

Solution of Problem 2.8.5. The solution is obtained with minor modifications from the one of Problem 2.8.4:

$$
\begin{aligned}
& \forall z \exists x \exists y \cdot U(x) \wedge V(y) \wedge f(x, y)=z \wedge \\
& \forall x_{1} \forall x_{2} \forall y_{1} \forall y_{2} \cdot U\left(x_{1}\right) \wedge U\left(x_{2}\right) \wedge V\left(y_{1}\right) \wedge V\left(y_{2}\right) \wedge \\
& \quad f\left(x_{1}, y_{1}\right)=f\left(x_{1}, y_{1}\right) \rightarrow x_{1}=x_{2} \wedge y_{1}=y_{2} .
\end{aligned}
$$

Solution of Problem 2.8.6. We axiomatise the powerset of U. We use the relation symbol " ϵ " (written in infix form) with the intended interpretation that $u \in x$ means that u is an element of U and that u "belongs" to x. Only elements of U can be members of sets:

$$
\forall u \forall x . x \in u \rightarrow U(u)
$$

Sets with identical elements are equal (extensionality):

$$
\forall x \forall y \cdot(\forall u \cdot u \in x \leftrightarrow u \in y) \rightarrow x=y
$$

There is an empty set:

$$
\exists x \forall u . \neg u \in x .
$$

For every set x and every element u there exists $y=x \cup\{u\}$:

$$
\forall x \forall u \exists y \forall v . v \in y \leftrightarrow(v \in x \vee v=u)
$$

The latter is the key new technique required in this problem: if a subset is represented, then all subsets formed by adding a new element to it are also represented. These axioms, when taken together, imply that the whole universe is indeed, in terms of the relation " ϵ ", the powerset of U and has therefore $2^{\left|U^{2}\right|}$ elements. Yet again, the construction of a model where U has an arbitrary cardinality is obvious.

There are other solutions of this problem. The first one is two write the axioms of fields (see the solution of Problem 2.8.9 below) and add an axiom $1+1=0$ which says that the characteristic of the field is 2 . Then the finite models of the whole set of sentences are fields of cardinalities 2^{n} for positive n, and for every n such a field exists. Another algebraic solution is to take the axioms of Boolean algebras. It can be shown that every finite Boolean algebra has 2^{n} elements for a positive n, and for every n such an algebra exists. In both cases one should add an extra clause permitting a single-element model.

Solution of Problem 2.8.7. This time we are going to express that the universe is the set of all functions $U \rightarrow U$. We use a ternary relation Apply, with the intended meaning that $\operatorname{Apply}(f, u, v)$ means that function f applied to an element u of U yields an element v of U. Every element f of the universe is a binary relation on U :

$$
\forall f \forall u \forall v \cdot \operatorname{Apply}(f, u, v) \rightarrow U(u) \wedge U(v)
$$

Every element f of the universe is indeed a function $U \rightarrow U$:

$$
\forall f \forall u \exists!v . \operatorname{Apply}(f, u, v) .
$$

Every two elements of the universe, if they are identical as functions, then they are indeed equal (extensionality):

$$
\forall f \forall g \cdot(\forall u \forall v \cdot \operatorname{Apply}(f, u, v) \leftrightarrow \operatorname{Apply}(g, u, v)) \rightarrow f=g .
$$

The crucial closure property that we require is that single-point modifications of represented functions are also represented: For every function f, argument u, and value $v, g=f[u \mapsto v]$ is also a function:

$$
\begin{array}{r}
\forall f \forall u \forall v \exists g \forall t \forall w \cdot \operatorname{Apply}(g, t, w) \leftrightarrow \\
\quad(\operatorname{Apply}(f, t, w) \vee t=u \wedge w=v) .
\end{array}
$$

Solution of Problem 2.8.8. Consider the ternary relation $R(p, x, y)$ which intuitively holds if p is a linear order and x comes before y w.r.t. p. Let the required sentence be the conjunction of the following axioms:

$$
\begin{array}{ll}
\forall p \forall x \forall y \cdot R(p, x, y) \rightarrow U(x) \wedge U(y), & \text { (binary relation) } \\
\forall p \forall x \forall y \forall z \cdot R(p, x, y) \wedge R(p, y, z) \rightarrow R(p, x, z), & \text { (transitivity) } \\
\forall p \forall x \forall y \cdot R(p, x, y) \vee R(p, y, x), & \text { (linearity) } \\
\forall p \forall q \cdot(\forall x \forall y \cdot R(p, x, y) \leftrightarrow R(q, x, y)) \rightarrow p=q, & \text { (extensionality) } \\
\forall p \forall x \forall y \exists q \forall u \forall v \cdot R(q, u, v) \leftrightarrow & \\
\quad(R(p, u, v) \wedge u \neq x \wedge v \neq y \vee & \text { (swap) }
\end{array}
$$

The crucial property is the last one, which allows to generate all linear orders by performing single swaps.

Solution of Problem 2.8.9. It is well known that any finite field has p^{n} elements, where p is a prime number, called its characteristic, and n is a positive natural number. Therefore it suffices to consider a sentence over two constant symbols " 0 ", " 1 " and two binary functions " + ", "." expressing
the classical axioms of fields:

$$
\begin{array}{ll}
\forall a \forall b \forall c \cdot a+(b+c)=(a+b)+c, & \text { (associativity of +) } \\
\forall a \cdot a+0=a, & \text { (neutral element of +) } \\
\forall a \exists b \cdot a+b=0, & \text { (inverse w.r.t. +) } \\
\forall a \forall b \cdot a+b=b+a ; & \text { (commutativity of +) } \\
\forall a \forall b \forall c \cdot a \cdot(b \cdot c)=(a \cdot b) \cdot c, & \text { (associativity of } \cdot \text {) } \\
\forall a \cdot a \cdot 1=a, & \text { (neutral element of } \cdot \text {) } \\
\forall a \cdot a \neq 0 \rightarrow \exists b \cdot a \cdot b=1, & \text { (inverse w.r.t. } \cdot \text {) } \\
\forall a \forall b \cdot a \cdot b=b \cdot a, & \text { (commutativity of } \cdot \text {) } \\
\forall a \forall b \forall c \cdot a \cdot(b+c)=(a \cdot b)+(a \cdot c), & \text { (distributivity) } \\
0 \neq 1 . &
\end{array}
$$

2.8.2 Closure properties

Solution of Problem 2.8.10 "Spectra are closed under union". Let $M=\operatorname{Spec}(\varphi)$ and $N=\operatorname{Spec}(\psi)$. Let φ^{\prime} be the sentence obtained from φ by replacing every relation and function symbols in the signature of φ in such a way that φ^{\prime} and ψ have no common symbol in their signature. Notice that this operation preserves the spectrum $M=\operatorname{Spec}\left(\varphi^{\prime}\right)$. Consider $\xi \equiv \varphi^{\prime} \vee \psi$ and we claim that $M \cup N=\operatorname{Spec}(\xi)$ holds. For the " \subseteq " inclusion, let $m \in M$ (the case $m \in N$ is analogous). There exists a model \mathfrak{A} of φ^{\prime} of size m. Since φ^{\prime} and ψ have no common symbol in their signature, \mathfrak{A} can be extended to a model of $\varphi^{\prime} \vee \psi$ by adding an arbitrary interpretation for the symbols of ψ. For the " \supseteq " inclusion, let $m \in \operatorname{Spec}(\xi)$. There exists a model \mathfrak{A} of ξ of size m, and thus \mathfrak{A} is either a model of φ^{\prime} or of ψ. In the former case (the latter being analogous), $m \in \operatorname{Spec}\left(\varphi^{\prime}\right)$, and thus $m \in M$, as required. Notice that in the second direction we did not use the assumption that φ^{\prime} and ψ have disjoint signature.

Solution of Problem 2.8.11 "Spectra are closed under intersection". The solution is very similar to the one of Problem 2.8.10 "Spectra are closed under union" by taking $\xi \equiv \varphi^{\prime} \wedge \psi$.

Solution of Problem 2.8.12 "Spectra are closed under addition". Let $M=$ $\operatorname{Spec}(\varphi)$ and $N=\operatorname{Spec}(\psi)$ and assume w.l.o.g. that the signatures of φ and ψ are disjoint and contain only relation symbols. Let us assume they are equal to $\left\{R_{1}, \ldots, R_{p}\right\}$, resp., $\left\{S_{1}, \ldots, S_{q}\right\}$. If either φ or ψ is unsatisfiable in finite models, then $M+N=\varnothing$ and we are done taking the sentence to be \perp. Assume both φ and ψ are satisfiable, i.e., M and N are nonempty. Add a fresh unary relational symbol U not already present either in φ, or in ψ. Intuitively, U partitions the model into two disjoint components, one of which is a model of φ, and the other a model of ψ. Let $[\varphi]_{U}$ be obtained from φ by relativising the quantifiers to U. This is formally defined using the following inductive definition (omitting the trivial cases for the Boolean connectives):

$$
[\exists x \cdot \xi]_{U} \equiv \exists x \cdot U(x) \wedge[\xi]_{U} \text { and }[\forall x \cdot \xi]_{U} \equiv \forall x \cdot U(x) \rightarrow[\xi]_{U}
$$

Consider the sentence

$$
\xi \equiv[\varphi]_{U} \wedge[\psi]_{\neg U}
$$

We claim that $\operatorname{Spec}(\xi)=M+N$. For the " \supseteq " inclusion, let $m \in M$ and $n \in N$. There is a model $\mathfrak{A} \vDash \varphi$ of cardinality m and a model $\mathfrak{B} \vDash \psi$ of cardinality n. By a suitable renaming, we can assume that $\mathfrak{A}, \mathfrak{B}$ have disjoint domains. Thus, the (disjoint) union $\mathfrak{C}=\mathfrak{A} \cup \mathfrak{B}$ is a model of ξ, where we interpret $U^{\mathfrak{C}}$ as the domain of \mathfrak{A}.

For the " \subseteq " inclusion, assume $l \in \operatorname{Spec}(\xi)$. There is a model $\mathfrak{C} \vDash \xi$ of the form

$$
\mathfrak{C}=\left(C, U^{\mathfrak{C}}, R_{1}^{\mathfrak{C}}, \ldots, R_{p}^{\mathfrak{C}}, S_{1}^{\mathfrak{C}}, \ldots, S_{q}^{\mathfrak{C}}\right)
$$

with a domain of cardinality $|C|=l$. Consider the two structures

$$
\mathfrak{A}=\left(A, R_{1}^{\mathfrak{C}}, \ldots, R_{p}^{\mathfrak{C}}\right) \quad \text { and } \quad \mathfrak{B}=\left(B, S_{1}^{\mathfrak{C}}, \ldots, S_{q}^{\mathfrak{C}}\right),
$$

where $A=U^{\mathfrak{C}}$ and $B=C \backslash U^{\mathfrak{C}}$. Then, $\mathfrak{A} \vDash \varphi$ and $\mathfrak{B} \vDash \psi$, and thus $l=|A|+|B| \in M+N$.

Solution of Problem 2.8.13 "Spectra are closed under multiplication". Let $M=$ $\operatorname{Spec}(\varphi)$ and $N=\operatorname{Spec}(\psi)$. We assume that the signatures of φ, ψ are disjoint. We use a binary relation symbol " \approx " to axiomatise an equivalence

Figure for Problem 2.8.13 "Spectra are closed under multiplication".
relation s.t. 1) all equivalence classes have the same cardinality, 2) each equivalence class is a model of φ, and 3) the set of equivalence classes is a model of ψ (i.e., \approx is interpreted as equality in ψ).

Regarding 1), we first axiomatise that \approx is an equivalence relation:

$$
\begin{array}{ll}
\forall x \cdot x \approx x, & \text { (reflexivity) } \\
\forall x \forall y \cdot x \approx y \rightarrow y \approx x, & \text { (symmetry) } \\
\forall x \forall y \forall z \cdot x \approx y \wedge y \approx z \rightarrow x \approx z . & \text { (transitivity) }
\end{array}
$$

In order to ensure that every equivalence class of \approx has the same number of elements, we introduce a second equivalence relation E "perpendicular to $\approx "$ (we skip the axioms of E being an equivalence relation):

$$
\begin{aligned}
& \forall x \forall y \cdot x \neq y \wedge x \approx y \rightarrow \neg E(x, y) \\
& \forall x \forall y!\exists \hat{y} \cdot y \approx \hat{y} \wedge E(x, \hat{y})
\end{aligned}
$$

Let ξ_{1} be the conjunction of all the formulas above.
Regarding 2), let \hat{x} be a fresh variable intuitively denoting a distinguished element used to select an equivalence class. Let $[\varphi]_{\approx, \hat{x}}$ be obtained by relativising the quantifiers of φ as follows:

$$
\begin{aligned}
& {[\exists x \cdot \xi]_{\approx, \hat{x}} \equiv \exists x \cdot x \approx \hat{x} \wedge[\xi]_{\approx, \hat{x}}, \text { and }} \\
& {[\forall x \cdot \xi]_{\approx, \hat{x}} \equiv \forall x \cdot x \approx \hat{x} \rightarrow[\xi]_{\approx, \hat{x}} .}
\end{aligned}
$$

The fact that each equivalence class of \approx is a model of φ is expressed by $\xi_{2} \equiv \forall \hat{x} \cdot[\varphi]_{\approx, \hat{x}}$.

Figure for Problem 2.8.15 "Semilinear sets are spectra".

Finally, regarding 3) we construct a formula ξ_{3} expressing the fact that all functions and relations in the signature of φ are invariant under \approx. Formally, if R is a relation symbol of arity k in the signature of ψ, then ξ_{3} has a conjunct of the form (and similarly for function symbols)

$$
\begin{gathered}
\forall x_{1} \cdots x_{k} \forall y_{1} \cdots y_{k} \cdot x_{1} \approx y_{1} \wedge \cdots \wedge x_{k} \approx y_{k} \rightarrow \\
\left(R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow R\left(y_{1}, \ldots, y_{k}\right)\right) .
\end{gathered}
$$

Consider the conjunction $\xi \equiv \xi_{1} \wedge \xi_{2} \wedge \xi_{3}$. We omit the details of checking $\operatorname{Spec}(\xi)=M \cdot N$.

Solution of Problem 2.8.15 "Semilinear sets are spectra". Since spectra are closed under finite union by Problem 2.8.10 "Spectra are closed under union", it suffices to show that a linear set L with base b and non-zero periods $p_{1}, \ldots, p_{n}>0$ is a spectrum. Since spectra are closed under "+" by Problem 2.8.12 "Spectra are closed under addition", it suffices to consider the case when $b=0$ and there is only one period $p>0$. Let f be a unary function symbol, and let φ axiomatise the fact that the p-th iterate of f is the identity, and no lower iterate has a fixed point:

$$
\begin{aligned}
\varphi \equiv & \forall x \cdot \underbrace{f(f(\cdots f(x) \cdots))}_{p \text { times }}=x \wedge \\
& \bigwedge_{q<p} \forall x \cdot \underbrace{f(f(\cdots f(x) \cdots))}_{q \text { times }} \neq x . \quad \text { (orbits of size } p \text {) }
\end{aligned}
$$

This implies that the domain of any model of φ splits into some number of orbits, each one of size p. Consequently, $\operatorname{Spec}(\varphi)$ contains all non-zero multiples of p. If there are more periods p_{1}, \ldots, p_{n}, it suffices to consider n disjoint bijections f_{1}, \ldots, f_{n} of the corresponding periodicities.

Solution of Problem 2.8.16 "Spectra and Kleene iteration". The answer is affirmative and it follows from the arithmetical fact that, for any subset $N \subseteq \mathbb{N}, N^{+}$is a semilinear set, to which we can apply Problem 2.8.15 "Semilinear sets are spectra".

Solution of Problem 2.8.17 "Doubling". W.l.o.g. we assume that φ does not include functional symbols. We choose one unary relational symbol U and one unary function symbol f, neither of them occurring in φ. Let $[\varphi]_{U}$ be obtained from φ by relativising all its quantifiers to U, similarly as in the solution of Problem 2.8.12 "Spectra are closed under addition". We express the fact that f is a permutation where every orbit has size two and in each orbit exactly one of the two elements belongs to U :

$$
\psi \equiv[\varphi]_{U} \wedge \forall x . f(f(x)=x \wedge f(x) \neq x \wedge(U(x) \leftrightarrow \neg U(f(x))) .
$$

Thus, $[\varphi]_{U}$ expresses the fact that the substructure consisting of the elements in U satisfies φ and f guarantees that the whole model has twice as many elements as those in U, as required.

2.8.3 Restricted formulas

Solution of Problem 2.8.18 "Spectra with only unary relations". Suppose that the quantifier rank of φ is k and let U_{1}, \ldots, U_{ℓ} be all unary relation symbols occurring in φ. Let \mathfrak{A} be a model of φ of size $|A| \geq k \cdot 2^{\ell}$. We show that φ has arbitrary large models, and thus $\operatorname{Spec}(\varphi)$ is infinite. For every set of
elements $X \subseteq A$, let $X^{1}=X$ and $X^{-1}=A \backslash X$. The domain A is partitioned by all intersections of the form

$$
U^{\varepsilon}=\bigcap_{i=1}^{\ell} U_{i}^{\varepsilon_{i}}, \quad \text { with } \varepsilon=\varepsilon_{1} \cdots \varepsilon_{\ell} \in\{1,-1\}^{\ell}
$$

Since there are 2^{ℓ} such intersections, at least one such intersection U^{ε} has cardinality $\left|U^{\varepsilon}\right| \geq k$. Consider a new structure \mathfrak{A}^{\prime} obtained from \mathfrak{A} by introducing arbitrarily many copies of elements in U^{ε}. An application of Ehrenfeucht-Fraïssé games shows that $\mathfrak{A} \equiv_{k} \mathfrak{A}^{\prime}$ (c.f. Section 2.12), i.e., they satisfy the same sentences of rank $\leq k$, and thus $\mathfrak{A}^{\prime} \vDash \varphi$.

Solution of Problem 2.8.19 "Spectra with a unary function". Consider the following sentence:

$$
\forall x . f(f(x))=x \wedge f(x) \neq x
$$

The first conjunct enforces that f is an involutive permutation, whence its cycles are of size 1 or 2 . The second conjunct guarantees that all cycles are of size 2. Consequently, the sentence has models of each even cardinality, and no models of odd cardinality. Therefore spectrum of this sentence is the infinite set of even numbers, and its complement is the infinite set of odd numbers. This also provides an alternative solution to Problem 2.8.3 "Even numbers".

Solution of Problem 2.8.20. Let $\varphi \equiv \exists x . U(x)$. Then $\operatorname{Spec}(\varphi)=\operatorname{Spec}(\neg \varphi)=$ $\mathbb{N}_{>0}$. If only a unary function symbol f is allowed, then such a sentence does not exist. Indeed, up to isomorphism there is only one structure \mathfrak{A} of cardinality 1 over a single unary function symbol. Therefore 1 belongs to exactly one of the sets $\operatorname{Spec}(\varphi), \operatorname{Spec}(\neg \varphi)$.

Solution of Problem 2.8.21 "Spectra of existential sentences". This is an easy consequence of the fact that we can add any number of fresh elements to the domain of a model of an existential first-order sentence (without changing the meaning of relations) and still obtain a model thereof.

Solution of Problem 2.8.22 "Spectra of universal sentences". Thanks to skolemisation, we can convert φ to an equisatisfiable universal formula ψ by adding new functional symbols. It suffices to observe that skolemisation preserves and reflects not only satisfiability, but also the size of models.

If we restrict ψ to use only relational symbols, then, dually to Problem 2.8.21 "Spectra of existential sentences", $\operatorname{Spec}(\psi)$ is downward closed.

Solution of Problem 2.8.23 "Spectra of $\exists \forall$-sentences". Thanks to the characterisation in Problem 2.11.4 "Preservation for $\exists^{*} \forall^{*}$-sentences", if φ is an $\exists^{n} \forall^{*}$-sentence and $\mathfrak{A} \vDash \varphi$ has size $|A|=m$, then there are models of all cardinalities $n \leq k \leq m$. Thus, if φ has arbitrarily large models its spectrum is cofinite (and its complement has size at most n), and otherwise its spectrum is finite.

We can write a $\forall \exists$-sentence over a relational alphabet having infinite and co-infinite spectrum. Consider the solution from Problem 2.8.3 "Even numbers". It is a $\forall \exists$-sentence having as spectrum precisely the even numbers. However, it uses a unary function f. We replace f with a binary relation F, we axiomatise that F is functional with the $\forall \exists$-sentence

$$
\forall x \cdot \exists y \cdot F(x, y) \wedge \forall x, y, z \cdot F(x, y) \wedge F(x, z) \rightarrow y=z
$$

we replace $U(f(x))$ with $\exists y \cdot F(x, y) \wedge U(y)$, and expressions of the form $f(x)=y$ with $F(x, y)$. The resulting formula uses only a relational signature and it is in the $\forall \exists$-class, as required.

2.8.4 Counting models

Solution of Problem 2.8.25. Let the signature Σ consist of a single unary relation symbol U, and let φ be $\exists x . U(x)$. Each isomorphism class of models of cardinality n over Σ is uniquely determined by the number of elements in U. Therefore, there are $n+1$ such structures, and φ excludes the model with empty U, so there remain precisely n such models.

Solution of Problem 2.8.26. Let the signature Σ consist of a unary relation symbol U and a binary relation symbol \leq, and let φ axiomatise that \leq is a linear order (cf. Problem 2.6.5). Each isomorphism class of models of

Figure for Problem 2.8.26.
cardinality n over Σ is determined by selecting which elements are in U. The linear order \leq is used to distinguish different elements. Therefore there are 2^{n} such structures.

Solution of Problem 2.8.27. The signature Σ consists of a single unary relation symbol U and binary relation symbol \leq. The sentence φ is the conjunction of the axioms of linear orders and the following extra condition saying that there are precisely k elements satisfying U :

$$
\exists x_{1} \ldots \exists x_{k} \cdot \bigwedge_{1 \leq i<j \leq k} x_{i} \neq x_{k} \wedge \bigwedge_{1 \leq i \leq k} U\left(x_{i}\right) \wedge \forall x . U(x) \rightarrow \bigvee_{1 \leq i \leq k} x=x_{i}
$$

Solution of Problem 2.8.28. Let φ axiomatise two linear orders \leq_{1}, \leq_{2}. Each isomorphism class of models of cardinality n is determined by sorting the elements according to \leq_{1} and then describing the permutation which gives their order according to \leq_{2}. There are $n!$ such structures, as required.

2.8.5 Characterisation

The following problem shows a complexity upper bound for spectra of first-order logic.

Solution of Problem 2.8.29 "Spectra are in NEXPTIME". We show an NPTIME algorithm for the case when n is encoded in unary, from which the claim follows. We guess a relational model $\mathfrak{A}=\left(A, a_{1}^{\mathfrak{A}}, \ldots, a_{n}^{\mathfrak{A}}, R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}}\right)$ of size $|A|=n$ together with interpretations $R_{1}^{\mathfrak{A}}, \ldots, R_{k}^{\mathfrak{A}}$ for all the relational symbols in the signature of φ (functional symbols can be treated as relations). We transform φ into an equivalent (w.r.t. \mathfrak{A}) quantifier-free formula ψ by applying the following two expansion rules for quantifiers:

$$
\begin{array}{lll}
\exists x . \xi & \text { becomes } & \xi\left[x \mapsto a_{1}\right] \vee \cdots \vee \xi\left[x \mapsto a_{n}\right], \text { and } \\
\forall x . \xi & \text { becomes } & \xi\left[x \mapsto a_{1}\right] \wedge \cdots \wedge \xi\left[x \mapsto a_{n}\right] .
\end{array}
$$

Since n is presented in unary, ψ is of size polynomial in the size if φ. Finally, we can check $\mathfrak{A} \vDash \psi$ in PTIME.

2.9 Compactness

Solution of Problem 2.9.1 "Compactess theorem". By completeness, $\Gamma \vDash \varphi$ implies $\Gamma \vdash \varphi$, and since proofs are finite, there are finitely many hypotheses $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ s.t. $\Gamma_{0} \vdash \varphi$. By soundness, $\Gamma_{0} \vDash \varphi$, as required.

Solution of Problem 2.9.2 "Compactness theorem (w.r.t. satisfiability)". If Γ is unsatisfiable, then by definition $\Gamma \vDash \perp$, and thus by Problem 2.9.1 "Compactess theorem" there exists a finite subset $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ s.t. $\Gamma_{0} \vDash \perp$, i.e., Γ_{0} is also unsatisfiable. For the other direction, if $\Gamma \vDash \varphi$, then $\Gamma \cup\{\neg \varphi\}$ is unsatisfiable, and thus there exists a finite subset $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ s.t. $\Gamma_{0} \cup\{\neg \varphi\}$ is unsatisfiable, i.e., $\Gamma_{0} \cup\{\neg \varphi\} \vDash \perp$. By Problem 1.1.3, $\Gamma_{0} \vDash \varphi$, as required.

Solution of Problem 2.9.3 "Compactness in finite structures?" The finite variant does not hold. For instance, consider $\Gamma=\left\{\varphi_{\geq 1}, \varphi_{\geq 2}, \ldots\right\}$, where $\varphi_{\geq n}$ is the sentence from Problem 2.1.6 "Cardinality constraints I" expressing that there are at least n elements in the model, and $\varphi \equiv \perp$. The set Γ has no finite models and thus it trivially satisfies the premise of the finite variant of compactness. However, every finite subset $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ admits finite models, which is a contradiction since φ has no models.

Solution of Problem 2.9.4. Assume $\mathcal{A}=\operatorname{Mod}(\Delta)$ and $\operatorname{Mod}(\Sigma) \backslash \mathcal{A}=\operatorname{Mod}(\Gamma)$. Since $\Delta \cup \Gamma$ is unsatisfiable, by compactness there are finite subsets $\Delta_{0} \subseteq_{\text {fin }} \Delta$ and $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ s.t. also $\Delta_{0} \cup \Gamma_{0}$ is unsatisfiable. We show that Δ_{0} and Δ have exactly the same models, i.e., $\operatorname{Mod}\left(\Delta_{0}\right)=\operatorname{Mod}(\Delta)$. If $\mathfrak{A} \vDash \Delta_{0}$, then $\mathfrak{A} \neq \Gamma_{0}$, which implies $\mathfrak{A} \not \vDash \Gamma$, and, therefore, $\mathfrak{A} \vDash \Delta$. The converse implication is obvious. Consequently, $\varphi \equiv \wedge \Delta_{0}$ defines \mathcal{A}, i.e., $\mathcal{A}=\operatorname{Mod}(\varphi)$, and similarly $\psi \equiv \wedge \Gamma_{0}$ defines $\operatorname{Mod}(\Sigma) \backslash \mathcal{A}$.

Solution of Problem 2.9.5 "Definable separability of axiomatisable classes". Assume $\mathcal{A}=\operatorname{Mod}(\Delta)$ and $\mathcal{B}=\operatorname{Mod}(\Gamma)$ are disjoint. Since $\Delta \cup \Gamma$ is unsatisfiable, by compactness there are finite subsets $\Delta_{0}=\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \subseteq_{\text {fin }} \Delta$ and $\Gamma_{0}=\left\{\psi_{1}, \ldots, \psi_{n}\right\} \subseteq_{\text {fin }} \Gamma$ s.t. $\Delta_{0} \cup \Gamma_{0}$ is already unsatisfiable. Consider the sentence

$$
\varphi \equiv \varphi_{1} \wedge \cdots \wedge \varphi_{m} \wedge\left(\neg \psi_{1} \vee \cdots \vee \neg \psi_{n}\right)
$$

and let $\mathcal{C}=\operatorname{Mod}(\varphi)$. We clearly have $\mathcal{C} \cap \mathcal{B}=\varnothing$, since structures in \mathcal{B} satisfy all the ψ_{i} 's. Let $\mathfrak{A} \in \mathcal{A}$. Thus, all the φ_{i} 's are satisfied. Since $\Delta_{0} \cup \Gamma_{0}$ is unsatisfiable, there exists some ψ_{i} which fails in \mathfrak{A}. Consequently, \mathfrak{A} satisfies φ, as required.

2.9.1 Nonaxiomatisability

Solution of Problem 2.9.6 "Finiteness is not axiomatisable". Towards reaching a contradiction, assume Δ axiomatises finiteness, and consider the set

$$
\Gamma=\Delta \cup\left\{\varphi_{\geq 0}, \varphi_{\geq 1}, \ldots\right\}
$$

where $\varphi_{\geq n}$ is the sentence from Problem 2.1.6 "Cardinality constraints I" expressing that there are at least n elements in the model. Every finite $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ is satisfiable, since there are finite structures of arbitrarily large cardinality. By the compactness theorem, Γ is satisfiable, which is a contradiction because Γ has only infinite models.

Solution of Problem 2.9.7 "Finite diameter is not axiomatisable". Towards reaching a contradiction, let Δ be a purported axiomatisation and consider
the set $\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, where φ_{n} expresses that there are two vertices at distance $>n$:

$$
\varphi_{n} \equiv \exists x, y \cdot \neg \exists x_{1} \cdots x_{n-1} . E\left(x, x_{1}\right) \wedge E\left(x_{1}, x_{2}\right) \wedge \cdots \wedge E\left(x_{n-1}, y\right)
$$

Every finite subset of Γ is satisfiable, for example by considering sufficiently long paths. By compactness, Γ is satisfiable, and thus it has a model of infinite diameter, contradicting the assumption on Δ.

Solution of Problem 2.9.8 "Finite colourability is not axiomatisable". Assume that Δ is the required axiomatisation, and let

$$
\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where $\varphi_{n} \equiv \exists x_{1} \ldots \exists x_{n} \cdot \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} E\left(x_{i}, x_{j}\right)$ expresses the existence of a n-clique in the graph. Any finite set $\Gamma_{0} \subseteq_{\text {fin }} \Gamma$ is satisfiable, since any finite clique is finitely colourable. By the compactness theorem, Γ has a model, which by definition contains arbitrarily large cliques, and thus there is no finite number of colours sufficient to colour it, which is a contradiction.

Solution of Problem 2.9.9 "Finitely many equivalence classes is not axiomatisable". We extend a purported axiomatisation Δ of being finite index as $\Gamma=$ $\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, where φ_{n} says that there are at least n equivalence classes:

$$
\varphi_{n} \equiv \exists x_{1} \cdots x_{n} \cdot \bigwedge_{i \neq j} x_{i} \nsucc x_{j}
$$

A standard application of compactness concludes the argument, since 1) every finite subset of Γ is satisfied by an equivalence relation with sufficiently large index, and 2) all models of Γ have infinite index.

Solution of Problem 2.9.10 "Finite equivalence classes is not axiomatisable". A model of Γ is only required to have arbitrarily large equivalence classes, but not necessarily an infinite one, as shown in the picture. The problem is that the equivalence classes mentioned by the φ_{n} 's are in general different.

This can be fixed by adding a new constant c to the signature, and by requiring that the same c to appear in those unbounded classes:

$$
\varphi_{n} \equiv \exists x_{1} \cdots \exists x_{n} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge x_{i} \sim c
$$

In this way, the equivalence class of c in a model of Γ is infinite, and we can conclude by a standard application of compactness.

Solution of Problem 2.9.11 "Finitely generated monoids are not axiomatisable". It suffices to add to a purported axiomatisation Δ of finitely generate monoids the sentences $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, where φ_{n} says that there are at least n distinct generators:

$$
\varphi_{n} \equiv \exists x_{1} \cdots x_{n} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{i} \neg \exists y, z \cdot y \neq e \wedge z \neq e \wedge x_{i}=y \cdot z
$$

Each finite subset of $\Delta \cup \Gamma$ is satisfiable by, e.g., $\left(\left\{a_{1}, \ldots, a_{n}\right\}^{*}, \cdot, \varepsilon\right)$, and thus we conclude by a standard application of compactness.

Solution of Problem 2.9.12 "Cycles are not axiomatisable". By way of contradiction, let Δ axiomatise the existence of a cycle, and consider the set

$$
\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where $\varphi_{n} \equiv \neg \exists x_{1} \cdots x_{n} . E\left(x_{1}, x_{2}\right) \wedge \cdots \wedge E\left(x_{n-1}, x_{n}\right) \wedge E\left(x_{n}, x_{1}\right)$ expresses that there are no cycles of length n. Every finite subset of Γ is satisfiable, since there are graphs with cycles of length n but no shorter cycle. By compactness, Γ is satisfiable, and thus it has a model without cycles of any length, contradicting the assumption on Δ.

Solution of Problem 2.9.13 "Unions of cycles are not axiomatisable". Towards a contradiction, assume that such a set Δ of sentences exists, and consider the set

$$
\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where $\varphi_{n} \equiv \neg \exists x_{1} \cdots x_{n} . E\left(c, x_{1}\right) \wedge \cdots \wedge E\left(x_{n-1}, x_{n}\right) \wedge E\left(x_{n}, c\right)$ for a new constant c expressing that c does not belong to a cycle of length n. Every
finite subset of Γ is satisfiable, since there are models where c is on a cycle of length n but on no shorter cycle. By compactness, Γ is satisfiable, and thus it has a model where c does not belong to a cycle of any length, which contradicts the assumption on Δ.

Solution of Problem 2.9.14 "The Church-Rosser property is not axiomatisable (via compa Assume that Δ axiomatises CR. We add three constants a, b, c to the signature. Consider the set of sentences

$$
\Gamma=\Delta \cup\{a \rightarrow b, a \rightarrow c, a \neq b, a \neq c, b \neq c\} \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where φ_{n} says that there is no d reachable from b and c in less than n steps:

$$
\varphi_{n} \equiv \neg \exists d . \bigvee_{1 \leq i \leq n} b \rightarrow^{i} d \wedge \bigvee_{1 \leq j \leq n} c \rightarrow^{j} d
$$

Each finite subset of Γ is satisfiable, e.g., by the structure in the picture. We conclude by a standard application of compactness, since in any model of Γ no d is reachable from b and c.

Solution of Problem 2.9.15 "Strong normalisation is not axiomatisable (via compactness)' Let Δ be a purported axiomatisation of SN. We add countably many constant symbols a_{1}, a_{2}, \ldots to the signature. Consider the extension

$$
\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where φ_{n} says that there is a path $a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{n}$ of length n. Every finite subset of Γ is satisfiable by a sufficiently long but finite path, however every model of Γ fails SN because it contains an infinite path $a_{1} \rightarrow a_{2} \rightarrow \cdots$.

It is possible to avoid adding infinitely many constants at the price of introducing quantifiers: Consider the extension $\Gamma^{\prime}=\Delta \cup\left\{\psi_{1}, \psi_{2}, \ldots\right\}$ where ψ_{n} says that there exist unique elements x_{1}, \ldots, x_{n} s.t. $c \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n}$, for a new constant c.

Solution of Problem 2.9.16 "Well-orders are not axiomatisable". Towards a contradiction, let Δ axiomatise a well-order. Let $C=\left\{c_{0}, c_{1}, \ldots\right\}$ be a countable set of fresh constant symbols, and consider the set of formulas

$$
\Gamma=\Delta \cup\left\{c_{0}>c_{1}, c_{1}>c_{2}, \ldots\right\}
$$

Since there are strict total orders with arbitrarily long finite descending chains, each finite subset of Γ is satisfiable, and by compactness Γ is satisfiable, too. Its model is also a model of Δ, but it is not a well-order.

Solution of Problem 2.9.17. Suppose that Δ is an axiomatisation of \mathcal{A}. Add a constant c to the signature and consider the extension

$$
\Gamma=\Delta \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where φ_{n} expresses that c is not the supremum of n minimal elements:

$$
\forall x_{1} \ldots x_{n} \cdot\left(\bigwedge_{1 \leq i \leq n} \forall y \cdot y \not \ddagger x_{i}\right) \rightarrow \neg \bigwedge_{1 \leq i \leq n} x_{i} \sqsubseteq c \wedge \forall y \cdot\left(\bigwedge_{1 \leq i \leq n} x_{i} \sqsubseteq y\right) \rightarrow c \sqsubseteq y .
$$

Every finite subset of Γ is satisfiable, e.g., by the set of finite subsets of natural numbers ordered by inclusion $\left(\mathcal{P}_{\text {fin }}(\mathbb{N}), \subseteq\right)$, by choosing the constant c to be a sufficiently large set of numbers. We conclude by a standard application of compactness, since in every model of Γ, c is not a supremum of any finite set of minimal elements.

Solution of Problem 2.9.18. By compactness (in the form of Problem 2.9.1 "Compactess theorem"), there exists a finite $\Delta_{0}=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \complement_{\text {fin }} \Delta$ s.t. $\Delta_{0} \vDash \psi$. Since Δ_{0} is finite, this is the same as $\varphi_{1} \wedge \cdots \wedge \varphi_{n} \vDash \psi$, which in turn is equivalent to $\neg \psi \vDash \neg \varphi_{1} \vee \cdots \vee \neg \varphi_{n}$. Consequently, $\operatorname{Spec}(\neg \psi) \subseteq$ $\operatorname{Spec}\left(\neg \varphi_{1}\right) \cup \cdots \cup \operatorname{Spec}\left(\neg \varphi_{n}\right)$. The latter set is a finite union of finite sets, and hence itself finite.

Solution of Problem 2.9.19. Suppose that the set Δ satisfies the requirements above. Let $\tau_{1}(x), \tau_{2}(x), \ldots$ be the list of all terms no using the symbol f, and consider the extended set of axioms

$$
\bar{\Delta}=\Delta \cup\left\{\exists x . f(x) \neq \tau_{i}(x) \mid i \in \mathbb{N}\right\}
$$

Every finite subset $\Delta_{0} \subseteq_{\text {fin }} \bar{\Delta}$ contains finitely many of the additional formulas not in Δ, and thus it has a model where the arithmetic part is the standard field of real numbers and f is interpreted as some polynomial of degree higher than all degrees of all terms τ_{i} appearing in Δ_{0}. Thus Δ_{0} is satisfiable, and by compactness $\bar{\Delta}$ is also satisfiable. This is, however, a contradiction because f cannot be expressible in any model of $\bar{\Delta}$.

Solution of Problem 2.9.20. If the signature Σ contains only constant symbols $\left\{c_{1}, \ldots, c_{n}\right\}$ and no function symbols, then the only terms which can be constructed in this language are the c_{i} 's or variable x. The only equations one can write in this case are $c_{i}=c_{j}$ (which has 0 solutions if $c_{i}^{\mathfrak{A}}=c_{j}^{\mathfrak{A}}$, and any element of A is a solution otherwise), $c_{i}=x$ (which always has 1 solution), and $x=x$ (every element of A is a solution). Therefore, $\Gamma=\varnothing$ is an axiomatisation.

If the signature Σ contains at least one unary function symbol f, then we can already build all terms of the form $f^{i}(x)$. By way of contradiction, assume that Γ axiomatises property F , and consider the extended set of axioms

$$
\Delta=\Gamma \cup\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}
$$

where φ_{i} says that there are at least i solutions to the equation $f(x)=x$ (number of fixpoints of f). Clearly Δ is finitely satisfiable, since we can build models where f has arbitrarily many fixpoints. By Problem 2.9.1 "Compactess theorem", Δ is satisfiable, and thus it has a model where f has infinitely many fixpoints, contradicting that Γ axiomatises property F.

Solution of Problem 2.9.21 "Periodicity is not axiomatisable". Periodicity is definable by directly translating the informal prose into the single first-order logic sentence

$$
\exists k . k \neq 0 \wedge \forall x . f(x+k)=x .
$$

Standard periodicity, on the other hand, is not axiomatisable: By a standard compactness argument (c.f.Problem 2.9.1 "Compactess theorem"), it suffices to enlarge a purported axiomatisation Δ by the set of formulas $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$, where φ_{n} expresses that $s^{n}(0)$ is not a period:

$$
\varphi_{n} \equiv \exists x \cdot f\left(x+s^{n}(0)\right) \neq f(x)
$$

Finally, not being standard periodic is axiomatisable by Γ above.

Solution of Problem 2.9.22. By way of contradiction, let Δ be a purported axiomatisation for \mathcal{A}, and consider the set

$$
\Gamma=\Delta \cup\left\{\neg \varphi_{1}, \neg \varphi_{2}, \ldots\right\}
$$

Every finite subset of Γ is satisfiable, since there are models where f^{n} is the identity but no previous iterate f^{1}, \ldots, f^{n-1} is the identity. By compactness, Γ is satisfiable, and thus it has a model where no iterate of f is the identity, which is a contradiction.

The complement of \mathcal{A} equals

$$
\mathcal{B}=\operatorname{Mod}(\{f\}) \backslash \mathcal{A}=\bigcap_{n \in \mathbb{N} \backslash\{0\}} \operatorname{Mod}\left(\neg \varphi_{n}\right),
$$

and thus can be axiomatised by $\Delta=\left\{\neg \varphi_{1}, \neg \varphi_{2}, \ldots\right\}$.
Of course $\operatorname{Mod}(\{f\}) \backslash \mathcal{A}$ cannot be defined with a single first-order sentence φ, because then $\neg \varphi$ would define \mathcal{A}, which we have just demonstrated to be impossible.

2.10 Skolem-Löwenheim theorems

2.10.1 Going upwards

Solution of Problem 2.10.2 "Hessenberg theorem". We extend the signature with a functional symbol $f: A^{2} \rightarrow A$. We express that f is a bijection, and thus $|A|^{2}=|A|$, with the sentence

$$
\begin{aligned}
\varphi \equiv & \forall x, y, x^{\prime}, y^{\prime} \cdot\left(\left(x \neq x^{\prime} \vee y \neq y^{\prime}\right) \rightarrow f(x, y) \neq f\left(x^{\prime}, y^{\prime}\right)\right) \wedge \\
& \forall z \cdot \exists x, y \cdot f(x, y)=z .
\end{aligned}
$$

This sentence has an infinite countable model, such as $\aleph_{0}=\aleph_{0}^{2}$. By Theorem 2.10.1 "Upward Skolem-Löwenheim theorem", for any infinite cardinal \mathfrak{m}, φ has a model \mathfrak{B} of cardinality \mathfrak{m}. In particular, $f^{\mathfrak{B}}: B^{2} \rightarrow B$ is a bijection, hence $\mathfrak{m}^{2}=\mathfrak{m}$.

Solution of Problem 2.10.3. This is not possible. The described collection of sentences should have an infinite model, by a standard application of compactness. Then, according to Theorem 2.10.1 "Upward SkolemLöwenheim theorem", it should have a model of cardinality \mathfrak{c}.

Solution of Problem 2.10.4 "Infinite axiomatisability?" This is not possible. By Theorem 2.10.1 "Upward Skolem-Löwenheim theorem", any countable set of sentences over a countable signature (such as $\Delta_{\mathfrak{A}}$) which has a countable model (such as \mathfrak{A}), must have an uncountable model \mathfrak{B} as well, contradicting $\mathfrak{B} \cong \mathfrak{A}$ by a cardinality argument.

First solution (via compactness) of Problem 2.10.5 "Nowhere dense orders". Assume that Δ is the required axiomatisation, and add two new constants c, d to the signature. Consider the set of sentences

$$
\bar{\Delta}=\Delta \cup\left\{\exists x_{1}, \ldots, x_{n} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \bigwedge_{i=1}^{n} c<x_{i}<d \mid n \in \mathbb{N}\right\}
$$

We show that $\bar{\Delta}$ satisfies the assumptions of the compactness theorem. Let $\Delta_{0} \subseteq_{\text {fin }} \bar{\Delta}$ be an arbitrary finite subset of $\bar{\Delta}$, and let N be the maximum number of quantifiers in sentences in $\Delta_{0} \backslash \Delta$. Then Δ_{0} has a model $(\mathbb{Z},<, c, d)$ where we interpret c and d as two elements of distance larger than N, such as 0 and $N+1$. By virtue of the compactness theorem, $\bar{\Delta}$ has a model, and, by the definition of $\bar{\Delta}$, it contains infinitely many elements between the interpretations of c and d, so it is not nowhere dense, leading to a contradiction.

Second solution (via Skolem-Löwenheim) of Problem 2.10.5 "Nowhere dense orders". Let $\mathfrak{A}=(a,<)$ be any nowhere dense order, and fix an element $a \in A$. Let $d(x, y)=1+\mid\{z \in A \mid x<z<y$ or $y<z<x\} \mid$. Then A can be expressed as a countable union of finite sets $\bigcup_{n \in \mathbb{N}}\{x \in A \mid d(x, a) \leq n\}$, and thus it is itself countable. (Indeed, if some $b \in A$ had not belonged to the union, then the number of elements between b and a would have been infinite, which is impossible in a nowhere dense order.) It follows that there is no uncountable nowhere dense order, and there is a countable nowhere dense order $(\mathbb{Z},<)$. This contradicts Theorem 2.10.1 "Upward Skolem-Löwenheim theorem".

2.10.2 Going downwards

Solution of Problem 2.10.7. Let Γ be an axiomatisation for \mathcal{A}, and assume $\mathfrak{A} \notin \mathcal{A}$. The set of sentences $\operatorname{Th}(\mathfrak{A})$ satisfied by \mathfrak{A} contains at least one
sentence not in $\Gamma: \Gamma \nsubseteq \mathrm{Th}(\mathfrak{A})$. By Theorem 2.10.6 "Downward SkolemLöwenheim theorem", the theory $\operatorname{Th}(\mathfrak{A})$ has a countable model \mathfrak{B} s.t. $\mathfrak{B} \neq \Gamma$, as required.

Solution of Problem 2.10.8. If $A=\{a\}$, then there is only one element in the model $A^{\mathbb{N}}=\{a a \cdots\}$ and R is the identity, yielding the axiomatisation:

$$
\{\exists x \cdot \forall y \cdot y=x \wedge \forall x, y \cdot R(x, y) \leftrightarrow x=y\} .
$$

Now assume $|A|>1$. Since $A^{\mathbb{N}}$ is uncountable, the class \mathcal{A} contains only uncountable structures. If \mathcal{A} were axiomatisable by a set of first-order sentences Γ, then Γ would have a model of at most countable cardinality by the Theorem 2.10.6 "Downward Skolem-Löwenheim theorem", contradicting that \mathcal{A} contains only uncountable structures.

Solution of Problem 2.10.9. Assume that Γ axiomatises the class and consider the extended set

$$
\Delta=\Gamma \cup\left\{\exists x_{1}, \ldots, x_{n} \cdot \bigwedge_{i \neq j} f\left(x_{i}\right) \neq f\left(x_{j}\right) \mid n \in \mathbb{N}\right\} .
$$

Every finite subset of Δ has a model where $|f(A)|>n$, and thus by compactness Δ has an infinite model where $|f(A)|$ is infinite. Since the signature is finite, by the Skolem-Löwenheim theorem Δ has a countable model \mathfrak{A}. Since $|f(A)|$ is countable in \mathfrak{A}, we have $|f(A)|=|A|$, which is a contradiction.

Solution of Problem 2.10.10 "Function semigroups". Since there are infinite function semigroups and the signature is finite, if it were axiomatisable by a set of first-order sentences, then by Theorem 2.10.6 "Downward SkolemLöwenheim theorem" it should also contain a countable structure. However the set of functions $A \rightarrow A$ is never countable when A is infinite.

Solution of Problem 2.10.11. The class contains infinite structures, and the signature is finite. If the class were axiomatisable with a set of first-order sentences, then by Theorem 2.10.6 "Downward Skolem-Löwenheim theorem"
it would also contain a countable structure. But such a structure does not exist, because the cardinality of $\mathcal{P}(A)$ is never countable when A is infinite.

Solution of Problem 2.10.12. - Take \mathcal{B} to be any nonaxiomatisable class of structures. It is sandwiched between the empty class defined by \perp and the complete class defined by T .

- Let \mathcal{B} be an axiomatisable class of structures over a finite signature s.t. there is an infinite structure in the class $\mathfrak{A} \in \mathcal{B}$ and an infinite structure not in the class $\mathfrak{B} \notin \mathcal{B}$.
We can assume that \mathfrak{A} is countable by Theorem 2.10.6 "Downward Skolem-Löwenheim theorem", and that \mathfrak{B} is countable by Problem 2.10.7 By Theorem 2.10.1 "Upward Skolem-Löwenheim theorem" there exist uncountable structures elementary equivalent to \mathfrak{A}, resp., \mathfrak{B}. Let \mathcal{A} be \mathcal{B} with all uncountable structures elementary equivalent to \mathfrak{A} removed, and let \mathcal{C} be \mathcal{B} with all uncountable structures elementary equivalent to \mathfrak{B} added. Neither \mathcal{A} nor \mathcal{B} is axiomatisable because they do not satisfy the Skolem-Löwneheim theorem.

2.11 Relating models

2.11.1 Logical relations

Solution of Problem 2.11.2. This follows by a straightforward induction on the structure of terms, where $(\varrho, \sigma) \in R$ is used to prove the base case of variables.

Solution of Problem 2.11.3 "Fundamental property". We assume that the formula φ is in NNF, and thus negations (if any) appear only in front of atomic formulas. We prove (2.4) by structural induction on φ. Assume $(\varrho, \sigma) \in R$. The base case is handled directly by the definition of logical relation and Problem 2.11.2:

$$
\mathfrak{A}, \varrho \vDash R_{j}(\bar{t}) \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash R_{j}(\bar{t}) .
$$

The positive inductive cases involving " \vee " and " \wedge " are immediate. This proves the first point. The other points are proved by a combination of the following observations.

If R is faithful, then the induction goes through negation (applied to atomic formulas):

$$
\mathfrak{A}, \varrho \vDash \neg R_{j}(\bar{t}) \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash \neg R_{j}(\bar{t}) .
$$

If R is total, then the induction goes through existential formulas:

$$
\mathfrak{A}, \varrho \vDash \exists x . \varphi \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash \exists x . \varphi .
$$

Indeed, take $a \in A$ s.t. $\mathfrak{A}, \varrho[x \mapsto a] \vDash \varphi$. Since R is total, there is $b \in B$ s.t. $(a, b) \in R$, and thus $(\varrho[x \mapsto a], \sigma[x \mapsto b]) \in R$ too. By the inductive assumption, $\mathfrak{B}, \sigma[x \mapsto b] \vDash \varphi$, and thus $\mathfrak{B}, \sigma \vDash \exists x . \varphi$, as required.

If R is surjective, then we can handle universal formulas as well:

$$
\mathfrak{A}, \varrho \vDash \forall x . \varphi \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash \forall x . \varphi \text {. }
$$

Indeed, let $b \in B$ be arbitrary. Since R is surjective, there is $a \in A$ s.t. $(a, b) \in R$. Thus, $\mathfrak{A}, \varrho[x \mapsto a] \vDash \varphi$, and since $(\varrho[x \mapsto a], \sigma[x \mapsto b]) \in R$, by the inductive hypothesis we get $\mathfrak{B}, \sigma[x \mapsto b] \vDash \varphi$. Since b was arbitrary, we have $\mathfrak{B}, \sigma \vDash \forall x . \varphi$, as required.

Regarding the last point, assume that R is injective. This suffices to show that R preserves equalities:

$$
\mathfrak{A}, \varrho \vDash u=v \quad \text { implies } \quad \mathfrak{B}, \sigma \vDash u=v .
$$

Indeed, by Problem 2.11.2 applied twice we get $\left(\llbracket u \rrbracket_{\varrho}^{\mathfrak{A}}, \llbracket u \rrbracket_{\sigma}^{\mathfrak{B}}\right) \in R$ and $\left(\llbracket v \rrbracket_{\varrho}^{\mathfrak{A}}, \llbracket v \rrbracket_{\sigma}^{\mathfrak{B}}\right) \in R$. Since $\llbracket u \rrbracket_{\varrho}^{\mathfrak{A}}=\llbracket v \rrbracket_{\varrho}^{\mathfrak{A}}$ by assumption, thanks to injectivity we get $\llbracket u \rrbracket_{\sigma}^{\mathfrak{B}}=\llbracket v \rrbracket_{\sigma}^{\mathfrak{B}}$, as required.

Solution of Problem 2.11.4 "Preservation for $\exists^{*} \forall^{*}$-sentences". Let $\varphi \equiv \exists x_{1}, \ldots, x_{n} . \psi$ with ψ universal and assume $\mathfrak{A} \vDash \varphi$. There exists a variable valuation $\varrho=\left(x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right)$ s.t. $\mathfrak{A}, \varrho \vDash \psi$. Let the core be $C=\left\{a_{1}, \ldots, a_{n}\right\}$. Since ψ is universal, the rest of the argument is analogous to the easy direction of Problem 2.13.13 "Łoś-Tarski's theorem".

Figure for Problem 2.11.8.

2.11.2 Isomorphisms

Solution of Problem 2.11.6 "Isomorphism theorem". We apply Problem 2.11.3 "Fundamental property" since an isomorphism is a logical relation which is total, injective, surjective, and faithful.

Solution of Problem 2.11.7. Yes, each exponential function $\lambda x . a^{x}$, with $a>0$, is an isomorphism.

Solution of Problem 2.11.8. No, this is not possible since being a union of complete columns is not invariant under isomorphism. Take $\mathfrak{A}=(\mathbb{Z} \times$ $\left.\mathbb{Z}, E, U^{\mathfrak{Z}}\right)$ and $\mathfrak{B}=\left(\mathbb{Z} \times \mathbb{Z}, E, U^{\mathfrak{B}}\right)$, where

$$
U^{\mathfrak{A}}=\{(x, 0) \mid x \in \mathbb{Z}\} \quad \text { and } \quad U^{\mathfrak{B}}=\{(0, y) \mid y \in \mathbb{Z}\} .
$$

The mapping $h:(x, y) \mapsto(y, x)$ from $\mathbb{Z} \times \mathbb{Z}$ into itself is an isomorphism $\mathfrak{A} \cong_{h} \mathfrak{B}$, but \mathfrak{A} satisfies the considered property and \mathfrak{B} does not.

Solution of Problem 2.11.9. Let Δ be the set of axioms of dense linear orders without maximal and minimal elements. Every two countable orders of this kind are isomorphic thanks to Problem 2.12.12 "Countable EFgames". On the other hand, there exist two such nonisomorphic orders of cardinality of the continuum. One of them is (\mathbb{R}, \leq), and the other is the same with another copy of itself appended to the right. Both structures are dense and without endpoints. It remains to observe that every bounded subset of the former has a supremum, while there are bounded subsets of
the latter without a supremum. Suprema are preserved by isomorphisms, hence the two are not isomorphic.

2.11.3 Elementary equivalence

Solution of Problem 2.11.11. This follows immediately from Problem 2.11.6 "Isomorphism theorem", since isomorphisms preserve and reflect valid sentences.

Solution of Problem 2.11.12. This is not the case, since the sentence

$$
\exists x \cdot(\forall y \cdot x * y=y) \wedge \exists y \cdot y * y=x+x
$$

expresses that $\sqrt{1+1}$ exists, which is true in the first structure, and false in the second.

2.12 Ehrenfeucht-Fraïssé games

2.12.1 Equivalent structures

Solution of Problem 2.12.3. The rationals and the reals are not isomorphic due to a trivial counting argument-the reals are uncountable while the rationals are countable. Nonetheless, they are elementarily equivalent. This can be proved by showing that Player II wins $G_{k}((\mathbb{Q},<),(\mathbb{R},<))$ for every $k \in \mathbb{N}$. We prove that she even wins the infinite game $k=\infty$. Player II maintains the following invariant: Let $a_{1}, \ldots, a_{m} \in \mathbb{Q}$ and $b_{1}, \ldots, b_{m} \in \mathbb{R}$ be the elements selected so far. Then, for every $i, j \in\{1, \ldots, m\}$,

$$
a_{i}<a_{j} \quad \text { if, and only if, } \quad b_{i}<b_{j} .
$$

The invariant above ensures that Player II wins the game. In the first round, Player II can establish the invariant by an arbitrary choice. At round $m+1$, if Player I plays $a_{m+1} \in \mathbb{Q}$, then Player II has the obvious reply $b_{m+1}=a_{m+1} \in \mathbb{R}$, thus establishing the invariant. If Player I plays $b_{m+1} \in \mathbb{R}$ instead, then there are three cases to consider.

1. If b_{m+1} is larger than any other b_{i} 's, then Player II can pick $a_{m+1} \in \mathbb{Q}$ larger than any other a_{i} 's.
2. The case when b_{m+1} is the new least element is analogous.
3. Finally, let $b_{i}<b_{m+1}<b_{j}$ with b_{i} maximal and b_{j} minimal. Then Player II replies with $a_{m+1}=\frac{a_{i}+a_{j}}{2} \in \mathbb{Q}$, thus establishing the invariant as required.

Solution of Problem 2.12.4. An argument very similar as in Problem 2.12.3 can be used. Whenever Player I plays in the first component in one structure, then Player II replies in the same component in the other structure as in Problem 2.12.3. Whenever Player I plays in the second component in one structure, then Player II replies with the same element in the same component in the other structure.

Solution of Problem 2.12.5. Player II wins for $k=n$ and loses for any larger value. Player II ensures that the distance of close vertices is preserved while far vertices need to remain far, but the exact distance is unimportant. Let $h \in \mathbb{N}$ be a threshold. We say that two integers $x, y \in \mathbb{Z}$ are h-threshold equivalent, written $x \approx_{h} y$, if the following condition holds:

$$
x \approx_{h} y \text { if, and only, if either } x=y \text {, or } x, y \geq h .
$$

Player II maintains the following invariant: Let $a_{1}, \ldots, a_{m} \in A$ and $b_{1}, \ldots, b_{m} \in$ B be the elements selected up to and including round m. For every $i, j, k \in\{1, \ldots, m\}$,

$$
\begin{aligned}
& \text { (1) } d\left(a_{i}, a_{j}\right) \approx_{2^{n-m+1}} d\left(b_{i}, b_{j}\right), \text { and } \\
& \text { (2) } K\left(a_{i}, a_{j}, a_{k}\right) \text { iff } K\left(b_{i}, b_{j}, b_{k}\right) \text {, }
\end{aligned}
$$

where the distance $d(a, b) \in \mathbb{N} \cup\{\infty\}$ is the length of the shortest path from a to b, and $K\left(a_{i}, a_{j}, a_{k}\right)$ is the cyclic order relation saying that a_{j} is visited when going clockwise from a_{i} to a_{k} (we interpret \mathfrak{B} as a cyclic order too). First of all, this is winning since after the last round $m=n$, we have $d\left(a_{i}, a_{j}\right) \approx_{2} d\left(b_{i}, b_{j}\right)$, which means precisely $E\left(a_{i}, a_{j}\right)$ iff $E\left(b_{i}, b_{j}\right)$, as required. The invariant can be established at the first round by an arbitrary response of Player II.

At round $m+1$, let Player I select $b_{m+1} \in B$. Let b_{i} be the rightmost (largest) point and b_{j} the leftmost (smallest) point s.t. $K\left(b_{i}, b_{m+1}, b_{j}\right)$ holds.

By the invariant (2), it follows that there is no a_{k} visited when going clockwise from a_{i} to a_{j}, i.e., $K\left(a_{i}, a_{k}, a_{j}\right)$. Player II replies with some point a_{m+1} s.t. $K\left(a_{i}, a_{m+1}, a_{j}\right)$ holds (thus satisfying condition (2)) to be determined as follows. If $d\left(b_{i}, b_{j}\right)<2^{n-m+1}$, then by the inductive hypothesis we have $d\left(a_{i}, a_{j}\right)=d\left(b_{i}, b_{j}\right)$ and Player two selects the unique a_{m+1} s.t.

$$
d\left(a_{i}, a_{m+1}\right)=d\left(b_{i}, b_{m+1}\right) \text { and } d\left(a_{m+1}, d_{j}\right)=d\left(b_{m+1}, d_{j}\right)
$$

thus satisfying condition (1). If $d\left(b_{i}, b_{j}\right) \geq 2^{n-m+1}$ (including the case when $\left.d\left(b_{i}, b_{j}\right)=\infty\right)$, then $d\left(a_{i}, a_{j}\right) \geq 2^{n-m+1}$ by the inductive assumption. There are three sub-cases to consider.

1. If $d\left(b_{i}, b_{m+1}\right)<2^{n-(m+1)+1}$, then Player II (necessarily) selects a_{m+1} as the unique point satisfying

$$
d\left(a_{i}, a_{m+1}\right)=d\left(b_{i}, b_{m+1}\right)
$$

2. The case $d\left(b_{m+1}, d_{j}\right)<2^{n-(m+1)+1}$ is analogous.
3. Finally, assume $d\left(b_{i}, b_{m+1}\right), d\left(b_{m+1}, b_{j}\right) \geq 2^{n-(m+1)+1}$. By assumption, $d\left(a_{i}, a_{j}\right) \geq 2^{n-m+1}$, and thus Player II can pick some a_{m+1} in the middle between a_{i} and a_{j} satisfying $d\left(a_{i}, a_{m+1}\right), d\left(a_{m+1}, a_{j}\right) \geq 2^{n-(m+1)+1}$.

The construction when Player I plays $a_{m+1} \in A$ is very similar. The only modification is in 3 . above in the case that b_{i} is to the right of b_{j} : In this case, Player II needs to break symmetry and will select b_{m+1} to be at any distance $\geq 2^{n-(m+1)+1}$ to the right of b_{i} (the symmetric choice to the left of b_{j} would work too).

Solution of Problem 2.12.6. We show that Player II wins $G_{k}(\mathfrak{A}, \mathfrak{B})$ for every $k \in \mathbb{N}$. Let $B_{1}=\left\{\left.1-\frac{1}{n} \right\rvert\, n>0\right\}$ be the copy of \mathbb{N} in \mathfrak{B}, and let $B_{2}=\left\{\left.1+\frac{1}{n} \right\rvert\, n>0\right\} \cup\left\{\left.3-\frac{1}{n} \right\rvert\, n>0\right\}$ be the copy of \mathbb{Z} in \mathfrak{B}. For two points a, b, let $d(a, b) \in \mathbb{N} \cup\{\infty\}$ be the number of steps necessary to reach b from a. Player II plays as to guarantee the following invariant: If at round m

Figure for Problem 2.12.6.
the selected elements are $a_{1}, \ldots, a_{m} \in \mathbb{N}$ and $b_{1}, \ldots, b_{m} \in B=B_{1} \cup B_{2}$, then, for every $i, j \in\{1, \ldots, m\}$,
(1) $d\left(a_{i}, a_{j}\right) \approx_{2^{n-m+1}} d\left(b_{i}, b_{j}\right)$, and
(2) $a_{i} \leq a_{j}$ iff $b_{i} \leq b_{j}$,
where $\approx_{2^{n-m+1}}$ is the threshold equivalence relation as defined in Problem 2.12.5. We assume w.l.o.g. that Player I initially plays $a_{1}=0$, to which Player II responds with $b_{1}=0$. At round $m+1$, assume Player I plays $a_{m+1} \in \mathbb{N}$. There are two cases to consider. If a_{m+1} is a new maximal element, then let a_{i} be the largest element s.t. $a_{i}<a_{m+1}$, and by the invariant b_{i} is the largest element played so far in B. Player II replies with the unique $b_{m+1} \in B$ s.t. $d\left(b_{i}, b_{m+1}\right)=d\left(a_{i}, a_{m+1}\right)$ and $b_{i}<b_{m+1}$, thus establishing the invariant. Otherwise, let $a_{i}<a_{m+1}<a_{j}$ with a_{i} maximal and a_{j} minimal with this property. By the invariant, there is no b_{k} s.t. $b_{i}<b_{k}<b_{j}$, and Player II replies with some b_{m+1} s.t. $b_{i}<b_{m+1}<b_{j}$, to be established as follows. There are two cases to consider.

1. If $d\left(a_{i}, a_{j}\right)<2^{n-m+1}$, then by the invariant $d\left(a_{i}, a_{j}\right)=d\left(b_{i}, b_{j}\right)$ (in particular b_{i}, b_{j} are either both in B_{1} or in B_{2}), and Player II replies with the unique b_{m+1} s.t. $d\left(b_{i}, b_{m+1}\right)=d\left(a_{i}, a_{m+1}\right)$ (and thus $\left.d\left(b_{m+1}, b_{j}\right)=d\left(a_{m+1}, a_{j}\right)\right)$, which clearly preserves the invariant.
2. If $d\left(a_{i}, a_{j}\right) \geq 2^{n-m+1}$, then $d\left(b_{i}, b_{j}\right) \geq 2^{n-m+1}$ as well (including the case where $\left.d\left(b_{i}, b_{j}\right)=\infty\right)$. There are three sub-cases to consider.
(a) If $d\left(a_{i}, a_{m+1}\right)<2^{n-(m+1)+1}$, then Player II is obliged to choose the unique b_{m+1} s.t. $d\left(b_{i}, b_{m+1}\right)=d\left(a_{i}, a_{m+1}\right)$.

Figure for Problem 2.12.7.
(b) The case $d\left(a_{m+1}, a_{j}\right)<2^{n-(m+1)+1}$ is similar.
(c) Finally, if $d\left(a_{i}, a_{m+1}\right), d\left(a_{m+1}, a_{j}\right) \geq 2^{n-(m+1)+1}$, then Player II replies with any b_{m+1} s.t. $d\left(b_{i}, b_{m+1}\right), d\left(b_{m+1}, b_{j}\right) \geq 2^{n-(m+1)+1}$, which is chosen in B_{1} if $a_{i}, a_{j} \in B_{1}$ and in B_{2} otherwise.

The argument if Player I plays $b_{m+1} \in B$ is similar.

Solution of Problem 2.12.7. If player II wins $G_{4}(\mathfrak{A}, \mathfrak{B})$, then $\mathfrak{A} \equiv_{4} \mathfrak{B}$ by Theorem 2.12.2 "Finite EF-games". The following are sentences of quantifier rank ≤ 4, which are true in \mathfrak{A} and thus must be true in \mathfrak{B}.

1. There are precisely three distinct vertices s.t. every other vertex is incident to one of them:

$$
\begin{aligned}
& \exists x_{1} \exists x_{2} \exists x_{3} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \\
& \forall y \cdot E\left(x_{1}, y\right) \vee E\left(x_{2}, y\right) \vee E\left(x_{3}, y\right) \vee x_{1}=y \vee x_{2}=y \vee x_{3}=y
\end{aligned}
$$

2. There are no two such vertices:

$$
\neg \exists x_{1} \exists x_{2} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge \forall y . E\left(x_{1}, y\right) \vee E\left(x_{2}, y\right) \vee x_{1}=y \vee x_{2}=y
$$

Thus, \mathfrak{B} consists of three "central" vertices s.t. all other vertices are connected to them.
3. We forbid triangles and paths of length three:

$$
\begin{aligned}
& \neg \exists x_{1} \exists x_{2} \exists x_{3} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \wedge E\left(x_{3}, x_{1}\right), \text { and } \\
& \neg \exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4} \cdot \bigwedge_{i \neq j} x_{i} \neq x_{j} \wedge E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \wedge E\left(x_{3}, x_{4}\right) .
\end{aligned}
$$

Thus， \mathfrak{B} is the disjoint union of three stars with a total of n vertices，and thus it has $n-3$ edges．

Solution of Problem 2．12．8．Note that $G_{3}(\mathfrak{G}, \mathfrak{H})$ is equivalent to the same game played on the complement graphs $G_{3}(\overline{\mathfrak{G}}, \overline{\mathfrak{H}})$ ，since partial isomor－ phisms are the same in both cases．The complement of \mathfrak{G} consists of two edges and an isolated vertex．Any graph \mathfrak{H} satisfying $\mathfrak{H} \equiv_{3} \mathfrak{G}$ consists of an isolated vertex and at least two isolated edges．From this observation the thesis follows．

Solution of Problem 2．12．9．Regarding the first point，assume Player II wins $G_{n}(\mathfrak{A}, \mathfrak{B})$ ．The winning strategy for Player II in $G_{n}(\widetilde{\mathfrak{A}}, \widetilde{\mathfrak{B}})$ consists in mimicking her moves in the $G_{n}(\mathfrak{A}, \mathfrak{B})$ whenever Player I plays elements different from $\perp_{\mathfrak{A}}, T_{\mathfrak{A}}, \perp_{\mathfrak{B}}, T_{\mathfrak{B}}$ ．If Player I plays any of the new elements， then Player II plays the corresponding element in the other structure．

The converse implication does not hold．Consider finite total orders $\mathfrak{A}, \mathfrak{B}$ of different lengths $>2^{n}$ ．As in Problem 2．12．5，one can show that $\mathfrak{A} \equiv{ }_{n} \mathfrak{B}$ ．＂Removing＂a tilde means reducing the length by two and thus we would eventually produce two distinct short orders $\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}$ s．t． $\mathfrak{A} \not ⿻ 三 丨 n_{n} \mathfrak{B}$ ， which is a contradiction．

2．12．2 Distinguishing sentences

Solution of Problem 2．12．10＂Distinguishing chains＂．The winning strategy tree for Player I is shown in the figure．Player I is always able to en－ sure an edge $E\left(a_{0}, a_{1}\right)$ in the first structure and never a matching edge $E\left(h\left(a_{0}\right), h\left(a_{1}\right)\right)$ in the second structure；thus in each leaf the distinguishing quantifier－free formula is $E\left(a_{0}, a_{1}\right)$ ．Moves of Player I in the first structure correspond to existential quantifiers，while when she moves in the second structure it corresponds to universal quantifiers．The distinguishing formula directly corresponding to Player＇s I winning strategy is（we abuse notation by using as variable names the elements of \mathfrak{A}_{n} in order to facilitate the comparison with the picture）

$$
\begin{aligned}
\exists a_{0} \cdot & \left(\forall a_{1} \cdot a_{0} \neq a_{1} \rightarrow E\left(a_{0}, a_{1}\right) \wedge\right. \\
& \left(\forall a_{1} \cdot a_{0} \neq a_{1} \rightarrow E\left(a_{0}, a_{1}\right) \wedge\right. \\
& \left(\exists a_{1} \cdot a_{0} \neq a_{1} \wedge E\left(a_{0}, a_{1}\right) \wedge E\left(a_{0}, a_{1}\right)\right),
\end{aligned}
$$

which is logically equivalent to $\exists a_{0} \forall a_{1} . a_{0} \neq a_{1} \rightarrow E\left(a_{0}, a_{1}\right)$, also a distinguishing formula of rank 2 .

Solution of Problem 2.12.11 "The hypercube". Regarding the first point, we are looking for the least k s.t. Player I has a winning strategy in $G_{k}\left(\mathfrak{H}_{4}, \mathfrak{H}_{3}\right)$, and a sentence of rank k describing her strategy. We present a Player I's winning strategy for $k=3$. In the first two rounds she marks vertices $(0,0,0)$ and $(1,1,1)$ of \mathfrak{H}_{3}. No matter how Player II responds, there is always a vertex in \mathfrak{H}_{4} which is neither selected nor incident to any previously selected vertex, and this what Player I selects next. (Indeed, the degree of vertices in \mathfrak{H}_{4} is 4 , hence there are 2 selected vertices and no more than 8 additional vertices incident to them, a total of 10 , while there are 16 vertices in the whole graph.) Every Player II's answer is now losing, since every vertex of \mathfrak{H}_{3} either has been already selected or is incident to a selected one. The following sentence, extracted from the argument above, is true in \mathfrak{H}_{4} and false in \mathfrak{H}_{3} :

$$
\forall x \forall y \exists z . z \neq x \wedge z \neq y \wedge \neg E(x, z) \wedge \neg E(y, z) .
$$

The value $k=3$ is optimal, since Player II has an obvious winning strategy for in game with $k=2$ rounds.

Regarding the second point, Player I has the following winning strategy in $G_{3}\left(\mathfrak{H}_{3}, \mathfrak{H}_{3}^{-}\right)$:

1. Select a vertex x degree 2 in \mathfrak{H}_{3}^{-}. By symmetry, we can w.l.o.g. assume that Player II answers with $h^{-1}(x)=(0,0,0)$ in \mathfrak{H}_{3}.
2. Select vertex $y=(1,1,1)$ in \mathfrak{H}_{3}, and let $h(y)$ be Player II's response in \mathfrak{H}_{3}^{-}.
3. In \mathfrak{H}_{-}^{3}, the first selected vertex x has degree 2 and the second one $h(y)$ has degree at most 3 . Those two selected vertices and all those incident to them make a total of at most 7 vertices, while there are 8 vertices in the graph. Player I now chooses the remaining vertex z in \mathfrak{H}_{3}^{-}. Player II has no winning answer, because in \mathfrak{H}_{3} all vertices are either selected or incident to one of the selected vertices.

This strategy of Player II translates into the sentence

$$
\forall x \exists y \forall z . z \neq x \wedge z \neq y \rightarrow E(z, x) \vee E(z, y),
$$

which is true in \mathfrak{H}^{3} and false in \mathfrak{H}_{-}^{3}.
There is another solution:

1. In the first two moves, Player I selects both vertices of degree 2 in \mathfrak{H}_{-}^{3}. Her final winning move depends on the answers of Player II in \mathfrak{H}^{3}.
(a) If the vertices chosen by Player II are equal or connected by an edge, he loses immediately, even before the third round.
(b) If the vertices chosen by Player II are on two ends of a diagonal of a common face (e.g. $(0,0,0)$ and $(0,1,1))$, then Player II wins by choosing $(0,1,0)$ in \mathfrak{H}_{3}, which is connected by an edge to both selected vertices, while there is no such vertex in \mathfrak{H}_{3}^{-}.
(c) If the vertices chosen by Player II are on two ends of a diagonal of the cube (e.g. $(0,0,0)$ and $(1,1,1)$), then Player II wins by choosing a vertex in \mathfrak{H}_{3}^{-}which is not connected to any already selected one. Player II has no answer, because every vertex in \mathfrak{H}_{3} which in neither $(0,0,0)$ nor $(1,1,1)$, is incident to one of them.

This strategy translates into the distinguishing sentence

$$
\begin{aligned}
\forall x \forall y \cdot x & =y \vee E(x, y) \vee \\
& \exists z \cdot E(x, z) \wedge E(y, z) \vee \\
& \forall z \cdot x=z \vee y=z \vee E(x, z) \vee E(y, z) .
\end{aligned}
$$

2.12.3 Infinite EF-games

Let the infinite EF-game $G_{\infty}(\mathfrak{A}, \mathfrak{B})$ be played for a countable number of rounds. The following problem shows that countable EF-games capture isomorphism of countable structures.

Solution of Problem 2.12.12 "Countable EF-games". For the "if" direction, assume $\mathfrak{A} \cong_{h} \mathfrak{B}$. Player II's winning strategy consists in using h in order to reply to Player I: If at round i Player I selects $a_{i} \in \mathfrak{A}$, then Player II replies with $b_{i}=h\left(a_{i}\right) \in \mathfrak{B}$, and if Player I selects $b_{i} \in \mathfrak{B}$, then Player II replies with $a_{i}=h^{-1}\left(b_{i}\right)$. It is easy to see that this strategy is winning.

For the "only if" direction, assume that Player II has a winning strategy in $G_{\infty}(\mathfrak{A}, \mathfrak{B})$. We let Player I select an element of \mathfrak{A} at even rounds and
one of \mathfrak{B} at odd rounds, in such a way that in the limit the whole domains $X=A$ and $Y=B$ are selected.

Solution of Problem 2.12.13. Consider the two infinite trees \mathfrak{A} and \mathfrak{B} in the figure, where the latter is obtained from the former by adding an infinite branch. For every finite $n \in \mathbb{N}$, Player II wins $G_{n}(\mathfrak{A}, \mathfrak{B})$ by mapping the infinite branch of \mathfrak{B} into any fixed branch branch of length $\geq 2^{n}$ of \mathfrak{A}. However, Player II loses with $n=\infty$, since Player I can play on the infinite branch of \mathfrak{B}, which has no counterpart in \mathfrak{A} (and indeed, \mathfrak{A} and \mathfrak{B} are not isomorphic).

2.12.4 No equality

Solution of Problem 2.12.14. It suffices to consider the empty vocabulary $\Sigma=\varnothing$ and two structures \mathfrak{A} consisting of just one element, and \mathfrak{B} consisting of two elements. Then the sentence $\exists x . \forall y . y=x$ is satisfied in \mathfrak{A} but not in \mathfrak{B}. If equality is not available, then no formula can be written at all over the empty signature.

Solution of Problem 2.12.18. Let \mathfrak{A}^{\prime} be obtained from \mathfrak{A} by replacing every element $a \in A$ by k identical copies thereof a_{1}, \ldots, a_{k}, and similarly for \mathfrak{B}^{\prime}. Relations are updated in such a way as to make the new elements behave like the original ones. For instance, for binary relations we have $\left(a, a^{\prime}\right) \in R^{\mathfrak{A}}$ iff $\left(a_{i}, a_{j}^{\prime}\right) \in R^{\mathfrak{A} \mathfrak{A}^{\prime}}$ for every $i, j \in\{1, \ldots, k\}$. It remains to check that Player II wins $H_{k}(\mathfrak{A}, \mathfrak{B})$ iff she wins $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$.

For the "only if" direction, assume she has a winning strategy against Player I in $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$. In order to show that Player II wins in $H_{k}(\mathfrak{A}, \mathfrak{B})$, we play the two games in parallel, as follows: If at round i Player I picks element $a_{i} \in A$ for the j-th time in $H_{k}(\mathfrak{A}, \mathfrak{B})$, then she picks the corresponding j-th copy $a_{i, j} \in A^{\prime}$ in $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$, and when Player II subsequently replies with $b_{i, j^{\prime}} \in B^{\prime}$ in $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$, then Player II copies this move in $H_{k}(\mathfrak{A}, \mathfrak{B})$ by choosing $b_{i} \in B$. The construction when Player I picks an element in B is analogous. Assume $a_{1}, \ldots, a_{k} \in A$ and $b_{1}, \ldots, b_{k} \in B$ are the two sequences constructed at the end of the game $H_{k}(\mathfrak{A}, \mathfrak{B})$, and let $X=$ $\left\{a_{1, j_{1}}, \ldots, a_{k, j_{k}}\right\} \subseteq A^{\prime}$ and $Y=\left\{b_{1, h_{1}}, \ldots, b_{k, h_{k}}\right\} \subseteq B^{\prime}$ be the corresponding sets in $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right)$. Since Player II is playing according to a winning strategy in $G_{k}\left(\mathfrak{A}^{\prime}, \mathfrak{B}^{\prime}\right),\left.\left.\mathfrak{A}^{\prime}\right|_{X} \cong h \mathfrak{B}^{\prime}\right|_{Y}$. It's immediate to check that $\sim=$
$\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\} \subseteq A \times B$ is a $\mathfrak{A}, \mathfrak{B}$-invariant, and thus Player II wins $H_{k}(\mathfrak{A}, \mathfrak{B})$, as required.

The construction for the "if" direction is symmetric: When Player I picks $a_{i, j} \in A^{\prime}$, then she picks $a_{i} \in A$, and then Player II replies by selecting element $b_{i} \in B$ for the j-th time, then she replies with the j th copy $b_{i, j} \in B^{\prime}$. Since Player II plays a winning strategy in $H_{k}(\mathfrak{A}, \mathfrak{B})$, $\sim=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\} \subseteq A \times B$ is an $\mathfrak{A}, \mathfrak{B}$-invariant. It follows that $\left.\left.\mathfrak{A}^{\prime}\right|_{X} \cong{ }_{h} \mathfrak{B}^{\prime}\right|_{Y}$ for the isomorphism $h\left(a_{i, j_{i}}\right)=b_{i, h_{i}}$ for every $1 \leq i \leq k$.

2.12.5 One-sided EF-games

Solution of Problem 2.12.20. In the first three moves Player I chooses the centres of the stars in \mathfrak{B}, and in the fourth move she chooses any element of \mathfrak{A} in a star where Player II has not chosen any element so far.

Player I cannot win without switching sides. If Player I always plays in \mathfrak{B}, then Player II has a trivial copy-cat counter-strategy. If Player I always plays in \mathfrak{A}, then Player II copies her moves until the first time Player I has selected three different stars. At this point, Player II selects a node not at the centre of the remaining unselected star in \mathfrak{B}. Now, whatever Player I does in her last move, Player II can mimic it successfully.

Solution of Problem 2.12.21. The optimal value is $m=2$. Let $\mathfrak{A}_{1}=(\mathbb{Z}, \leq)$ and $\mathfrak{A}_{2}=(\mathbb{N}, \leq)$. In the standard game, Player I wins in two rounds: She first marks 0 in \mathbb{N}, and in the second round she marks in \mathbb{Z} the predecessor of the element specified by Player II in the first round.

Consider now the one-sided game with k rounds. If in the first round Player I plays in \mathbb{N}, then Player II has an obvious strategy to mimic in \mathbb{Z} the consecutive choices of Player I (indeed \mathbb{N} can be embedded in \mathbb{Z}).

If Player I initially plays a_{1} in \mathbb{Z}, then Player II answers in \mathbb{N} with an element sufficiently far from the origin; distance $\geq 2^{k}$ suffices. The subsequent moves of Player I to the left of a_{1} are answered by Player II as in Problem 2.12.5, and moves to the right of a_{1} are mimicked precisely by Player II in \mathbb{N}.

2.12.6 Inexpressibility

Solution of Problem 2.12.22 "Eulerian cycles are not definable". A simple graph has an Euler cycle if, and only if, every vertex is of even degree.

Figure for Problem 2.12.24 "Hanf".

Therefore a clique K_{n} has an Eulerian cycle iff n is odd. An application of EF-games shows that sentences of quantifier rank $\leq n$ cannot distinguish K_{n} and K_{n+1}.

Solution of Problem 2.12.23 "Planarity is not definable (via EF-games)". Let $n \in \mathbb{N}$. Consider the graphs in the picture \mathfrak{A}_{n} (left) and \mathfrak{B} (right). The graph \mathfrak{A}_{n} contains the complete graph of five vertices K_{5} as a minor, and thus by Wagner's theorem it is not planar. Graph \mathfrak{B} is planar, and thus all of its finite subgraphs are planar as well. By playing the EF-game $G_{n}\left(\mathfrak{A}_{n}, \mathfrak{B}\right)$, one can show that $\mathfrak{A}_{n} \equiv_{n} \mathfrak{B}$ (Problem 2.12.5).

Solution of Problem 2.12.24 "Hanf". There is no such formula. The intuition is that \mathfrak{C}_{n} and \mathfrak{D}_{n} locally look the same. Formally, $\mathfrak{C}_{2^{n}} \equiv{ }_{n} \mathfrak{D}_{2^{n}}$ for every $n \in \mathbb{N}$. For two vertices u, v, let the distance $d(u, v)$ be the length of the shortest path connecting them. Player II plays as to preserve the following invariant: If at round m the two players have selected vertices $A_{m}=\left\{a_{1}, \ldots, a_{m}\right\} \subseteq C_{2^{n}}$ and $B_{m}=\left\{b_{1}, \ldots, b_{m}\right\} \subseteq D_{2^{n}}$ (corresponding to the partial isomorphism $\left.h\left(a_{1}\right)=b_{1}, \ldots, h\left(a_{m}\right)=b_{m}\right)$, then for every index $i \in\{1, \ldots, m\}$, letting $A=\left\{a_{j} \mid d\left(a_{i}, a_{j}\right)<2^{n-m}\right\}$ and $B=\left\{b_{j} \mid d\left(b_{i}, b_{j}\right)<2^{n-m}\right\}$ be the corresponding neighbourhoods, h extends to a partial isomorphism $\left.\left.\mathfrak{C}_{n}\right|_{A} \cong_{h} \mathfrak{M}_{n}\right|_{B}$.

2.12.7 Complexity

Solution of Problem 2.12.25 "Solving EF-games in PSPACE". Let $\mathfrak{A}, \mathfrak{B}$ have size n. We can assume w.l.o.g. that $k \leq n$, because we cannot play an

EF-game for more rounds than the number of elements in the two structures. Consider the following alternating polynomial time algorithm: Each position of the game is a pair of elements $\left(a_{i}, b_{i}\right)$, where $a_{i} \in A$ and $b_{i} \in B$. At the end of the game we must check whether $\left.\left.\mathfrak{A}\right|_{\left\{a_{1}, \ldots, a_{k}\right\}} \cong_{h} \mathfrak{B}\right|_{\left\{b_{1}, \ldots, b_{k}\right\}}$ for the partial isomorphism $h\left(a_{1}\right)=b_{1}, \ldots, h\left(a_{k}\right)=b_{k}$, which can be done in PTIME. The result follows since APTIME = PSPACE [6].

Solution of Problem 2.12.26 "Fixed-length EF-games". Let \mathfrak{A} and \mathfrak{B} have size n. Traverse the game tree using a min-max algorithm. Each node can be represented by $O(\log n)$ bits using a binary encoding of the elements in A and B. The tree has constant depth $2 \cdot k$, since there are k rounds with two moves in each and k is fixed, and thus the memory sufficient to store an entire branch is also $O(\log n)$. In a leaf, checking for the winner amounts to testing whether vertex pairs in the branch leading to this leaf define a partial isomorphism. The latter can be done with an additional $O(\log n)$ space, by checking for every tuple in $R^{\mathfrak{A}}$ whether the corresponding tuple is in $R^{\mathfrak{B}}$, and vice-versa. We thus obtain a LOGSPACE algorithm.

2.12.8 Complete theories

Solution of Problem 2.12.29 "Łoś-Vaught test". If Γ is not consistent (i.e., it has no model), then it is trivially complete. Thus, assume that Γ is consistent. By way of contradiction, assume that Γ is not complete, and thus there is a sentence φ such that $\Gamma \not \vDash \varphi$ and $\Gamma \not \vDash \neg \varphi$. Consequently, $\Gamma_{0}=\Gamma \cup\{\neg \varphi\}$ and $\Gamma_{1}=\Gamma \cup\{\varphi\}$ are both consistent and have infinite models, because Γ has no finite models itself. By Theorem 2.10.1 "Upward Skolem-Löwenheim theorem", there are two models $\mathfrak{A}_{0} \vDash \Gamma_{0}$ and $\mathfrak{A}_{1} \vDash \Gamma_{1}$ of cardinality κ, and in particular $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ are also models of Γ. Since $\mathfrak{A}_{0} \vDash \neg \varphi$ and $\mathfrak{A}_{1} \vDash \varphi$, by Problem 2.11.6 "Isomorphism theorem" $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ are not isomorphic, contradicting κ-categoriciy of Γ.

Solution of Problem 2.12.30 "Theory completeness and decidability". Let φ be an input sentence. Since Γ is complete, $\Gamma \vDash \varphi$ (logical consequence) if, and only if, $\varphi \in \Gamma$ (membership). The latter problem is decidable by assumption.

Solution of Problem 2.12.31. Since there are countably many sentences over any finite signature, there can be at most continuum-many complete theories over a finite signature. In order to show that this maximum cardinality can be attained, consider the finite signature $\Sigma=\{0, s, U\}$, where " 0 " is a constant, " s " is a unary function, and " U " is a unary (i.e., monadic) relation. Let us consider structures of the form $\left(\mathbb{N}, 0^{\mathbb{N}}, s^{\mathbb{N}}, U^{\mathbb{N}}\right)$, where $0^{\mathbb{N}}$ is the constant $0, " s$ " " is the successor function over the natural numbers, and $U^{\mathbb{N}} \subseteq \mathbb{N}$ is a unary relation. There is a structure of this form for any choice of $U^{\mathbb{N}}$, and thus continuum-many. Every two such structures $\left(\mathbb{N}, 0^{\mathbb{N}},+1^{\mathbb{N}}, U^{\mathbb{N}}\right)$ and $\left(\mathbb{N}, 0^{\mathbb{N}},+1^{\mathbb{N}}, V^{\mathbb{N}}\right)$ with $U^{\mathbb{N}} \neq V^{\mathbb{N}}$ can be distinguished by a sentence $U\left(s^{n}(0)\right)$ for some n s.t. $n \in U^{\mathbb{N}}$ and $n \notin V^{\mathbb{N}}$. Consequently, the respective (complete) theories are different: $\operatorname{Th}\left(\mathbb{N}, 0^{\mathbb{N}},+1^{\mathbb{N}}, U^{\mathbb{N}}\right) \neq \operatorname{Th}\left(\mathbb{N}, 0^{\mathbb{N}},+1^{\mathbb{N}}, V^{\mathbb{N}}\right)$. We conclude that there are continuum-many complete theories over Σ.

2.13 Interpolation

2.13.1 No equality

Solution of Problem 2.13.2 "Interpolation for quantifier-free ground formulas". Let φ^{\prime} be obtained from φ by replacing each subformula $\gamma \equiv R\left(t_{1}, \ldots, t_{k}\right)$ thereof by a corresponding propositional variable p_{γ}, and similarly for ψ. Since there is no equality, each propositional variable behaves completely independently from other propositional variable. By Problem 1.7.2 "Propositional interpolation", there exists a propositional interpolant ξ^{\prime}. We can thus reconstruct an interpolant ξ for φ, ψ by undoing the substitution above. Since ξ^{\prime} contains only propositional variables p_{γ} 's which are used both in φ^{\prime} and ψ^{\prime}, ξ contains only relation and function symbols which are used in φ and ψ.

Solution of Problem 2.13.3 "Preinterpolation for \forall / \exists sentences". By assumption, $(\forall \bar{x} . \varphi) \rightarrow \exists \bar{y} . \psi$ is a tautology, and thus $(\forall \bar{x} \cdot \varphi) \wedge \forall \bar{y} \cdot \neg \psi$ is unsatisfiable. By Problem 2.5.3, there are tuples of ground terms $\bar{u}_{1}, \ldots, \bar{u}_{m}$ and $\bar{v}_{1}, \ldots, \bar{v}_{n}$ s.t. already the following quantifier-free ground formula is unsatisfiable:

$$
\varphi\left[\bar{x} \mapsto \bar{u}_{1}\right] \wedge \cdots \wedge \varphi\left[\bar{x} \mapsto \bar{u}_{m}\right] \wedge \neg \psi\left[\bar{y} \mapsto \bar{v}_{1}\right] \wedge \cdots \wedge \neg \psi\left[\bar{y} \mapsto \bar{v}_{n}\right],
$$

and thus the following quantifier-free ground formula is a tautology

$$
\underbrace{\varphi\left[\bar{x} \mapsto \bar{u}_{1}\right] \wedge \cdots \wedge \varphi\left[\bar{x} \mapsto \bar{u}_{m}\right]}_{\varphi^{\prime}} \rightarrow \underbrace{\psi\left[\bar{y} \mapsto \bar{v}_{1}\right] \vee \cdots \vee \psi\left[\bar{y} \mapsto \bar{v}_{n}\right]}_{\psi^{\prime}}
$$

By Problem 2.13.2 "Interpolation for quantifier-free ground formulas", there exists a quantifier-free ground interpolant ξ s.t.

$$
\vDash \varphi^{\prime} \rightarrow \xi \quad \text { and } \quad \vDash \xi \rightarrow \psi^{\prime}
$$

Since ξ contains only atomic formulas $R(\bar{t})$ which appear both in φ^{\prime} and ψ^{\prime}, and the latter are obtained by replacing free variables in φ, resp., ψ, by ground terms, the symbol R necessarily appears in φ and ψ. By first-order reasoning, ξ is a preinterpolant for the original φ, ψ, since $\vDash \forall \bar{x} . \varphi \rightarrow \varphi[\bar{x} \mapsto$ $\left.\bar{u}_{1}\right] \wedge \cdots \wedge \varphi\left[\bar{x} \mapsto \bar{u}_{m}\right]$ and $\vDash \psi\left[\bar{y} \mapsto \bar{v}_{1}\right] \vee \cdots \vee \psi\left[\bar{y} \mapsto \bar{v}_{n}\right] \rightarrow \exists \bar{y} \cdot \psi$.

Note that the application of Problem 2.5.3 above yields ground terms u_{i} 's and v_{j} 's over the union of the vocabularies of φ, ψ, and thus ξ could possibly use unshared function symbols. This issue will be solved in the next problem.

Solution of Problem 2.13.4 "Interpolation for \forall / \exists sentences". We proceed by repeatedly applying the following transformation. Let $f(\bar{t})$ be a maximal ground subterm of ξ s.t. f is not a shared function symbol, and let z be a fresh variable. There are two cases to consider.

1. If f appears in φ but not in ψ, then

$$
\vDash \forall \bar{x} \cdot \varphi \rightarrow \xi^{\prime} \text { and } \vDash \xi^{\prime} \rightarrow \exists \bar{y} \cdot \psi, \text { where } \xi^{\prime} \equiv \exists z \cdot \xi[f(\bar{t}) \mapsto z]
$$

2. If f appears in ψ, but not in φ, then

$$
\vDash \forall \bar{x} \cdot \varphi \rightarrow \xi^{\prime} \text { and } \vDash \xi^{\prime} \rightarrow \exists \bar{y} \cdot \psi, \text { where } \xi^{\prime} \equiv \forall z \cdot \xi[f(\bar{t}) \mapsto z] .
$$

Both cases are easily proved. Repeatedly applying the procedure above will preserve ξ being a preinterpolant and eventually remove all unshared function symbols. (Maximality is only needed in order to be able to iterate the procedure above. Correctness of a single step only requires that $f(\bar{t})$ is ground.)

Solution of Problem 2.13.5 "Interpolation for sentences". Let's assume φ, ψ are in PNF (c.f. Problem 2.2.2 "Prenex normal form"). By assumption, $\varphi \rightarrow \psi$ is a tautology, and thus, by suitable renaming of quantified variables to avoid conflicts, we can have it in the form

$$
\vDash Q_{1} x_{1} \cdots Q_{m} x_{m} \cdot Q_{1}^{\prime} y_{1} \cdots Q_{n}^{\prime} y_{n} \cdot \varphi^{\prime} \rightarrow \psi^{\prime}
$$

where φ^{\prime} is quantifier-free with free variables $F V\left(\varphi^{\prime}\right)=\left\{x_{1}, \ldots, x_{m}\right\}$, and similarly $F V\left(\psi^{\prime}\right)=\left\{y_{1}, \ldots, y_{n}\right\}$. By Problem 2.4.3 "Herbrandisation" we obtain a tautology

$$
\vDash \exists x_{i_{1}}, \ldots, x_{i_{p}} \cdot \exists y_{j_{1}}, \ldots, y_{j_{q}} \cdot \varphi^{\prime \prime} \rightarrow \psi^{\prime \prime}
$$

where $x_{i_{1}}, \ldots, x_{i_{p}}$ are precisely the existentially quantified variables in $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\varphi^{\prime \prime}$ is the quantifier-free formula obtained from φ^{\prime} by herbrandisation; similarly for $y_{j_{1}}, \ldots, y_{j_{q}}$ and $\psi^{\prime \prime}$. The new formula $\varphi^{\prime \prime}$ contains fresh function symbols f_{i} 's corresponding to the eliminated universal variables x_{i} 's, and similarly for $\psi^{\prime \prime}$; we assume that all such function symbols are different. By a simple reshuffling of quantifiers, we obtain the tautology

$$
\vDash\left(\forall x_{i_{1}}, \ldots, x_{i_{p}} \cdot \varphi^{\prime \prime}\right) \rightarrow \exists y_{j_{1}}, \ldots, y_{j_{q}} \cdot \psi^{\prime \prime}
$$

to which we can apply Problem 2.13.4 "Interpolation for \forall / \exists sentences" and obtain a ground interpolant ξ (i.e., a sentence):

$$
\vDash \exists x_{i_{1}}, \ldots, x_{i_{p}} \cdot \varphi^{\prime \prime} \rightarrow \xi \quad \text { and } \quad \vDash \xi \rightarrow \exists y_{j_{1}}, \ldots, y_{j_{q}} \cdot \psi^{\prime \prime}
$$

By inverting the herbrandisation process (i.e., replacing newly introduced functions by universally quantified variables) and thanks to the fact that ξ has no free variables, we have

$$
\vDash Q_{1} x_{1} \cdots Q_{m} x_{m} \cdot \varphi^{\prime} \rightarrow \xi \quad \text { and } \quad \vDash \xi \rightarrow Q_{1}^{\prime} y_{1} \cdots Q_{n}^{\prime} y_{n} \cdot \psi^{\prime}
$$

thus showing that ξ is an interpolant for φ, ψ as required.

Solution of Problem 2.13.6 "Interpolation for formulas without equality". Replace every free variable x in φ, ψ by a fresh constant symbol c_{x} and let $\varphi^{\prime}, \psi^{\prime}$ be the corresponding sentences. Apply Problem 2.13.5 "Interpolation for sentences" to obtain an interpolant ξ and replace back every c_{x} by x.

2.13.2 Extensions

Solution of Problem 2.13.7 "Interpolation with equality". It suffices to axiomatise equality w.r.t. the vocabulary of φ, ψ and then apply Problem 2.13.6 "Interpolation for formulas without equality".

Solution of Problem 2.13.8. By the assumption, $\Gamma \cup\{\neg \psi\}$ is unsatisfiable, and by Problem 2.9.1 "Compactess theorem" there exists a finite set of formulas $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \subseteq \Gamma$ s.t. $\left\{\varphi_{1}, \ldots, \varphi_{n}, \psi\right\}$ is already unsatisfiable. In other words, $\vDash \varphi_{1} \wedge \cdots \wedge \varphi_{n} \rightarrow \psi$, and by Problem 2.13.7 "Interpolation with equality" there exists an interpolant ξ over the common signature and free variables s.t. $\vDash \varphi_{1} \wedge \cdots \wedge \varphi_{n} \rightarrow \xi$ and $\vDash \xi \rightarrow \psi$. It follows at once that $\Gamma \vDash \xi$, $\xi \vDash \psi$, and ξ contains only symbols and free variables that are in common in $\Gamma \cup\{\psi\}$.

Solution of Problem 2.13.9 "No interpolation for finite structures". It suffices to take any φ and ψ s.t. 1) φ is valid in any infinite models and ψ is invalid in some infinite model (thus $\varphi \not \neq \psi$), 2) the finite models of φ, ψ are precisely those with even cardinality (thus $\varphi \rightarrow \psi$ over finite models), and 3) they have disjoint signature. Thanks to the conditions above, any interpolant ξ must have empty signature and express precisely the fact that its finite models have even cardinality. In particular, $\operatorname{both} \operatorname{Spec}(\xi)$ and its complement $\mathbb{N}_{>} 0 \backslash \operatorname{Spec}(\xi)$ are infinite. By Problem 2.8.18 "Spectra with only unary relations", we know that over the empty signature $\operatorname{Spec}(\xi)$ is either finite or cofinite. Consequently, no such interpolant ξ can exist.

2.13.3 Applications of interpolation

Solution of Problem 2.13.10 "Separability of universal formulas". Let the two formulas be of the form $\varphi \equiv \forall \bar{x} \cdot \varphi^{\prime}$ and $\psi \equiv \forall \bar{y} \cdot \psi^{\prime}$, with $\varphi^{\prime}, \psi^{\prime}$ quantifier-free. We can assume that φ and ψ have the same free variables (otherwise, we can universally quantify the non-shared ones). Let's turn φ, ψ into sentences by interpreting the (common) free variables as zero-ary constant symbols. Since they are jointly unsatisfiable, $\vDash\left(\forall \bar{x} \cdot \varphi^{\prime}\right) \rightarrow \exists \bar{y} \cdot \neg \psi^{\prime}$. By Problem 2.13.3 "Preinterpolation for \forall / \exists sentences", they have a quantifier-free ground preinterpolant ξ. By interpreting back the introduced constants as free variables, we can see ξ as a quantifier-free interpolant
(since the signature is relational, there are no functional symbols in ξ): $\vDash\left(\forall \bar{x} \cdot \varphi^{\prime}\right) \rightarrow \xi$ and $\vDash \xi \rightarrow \exists \bar{y} \cdot \neg \psi^{\prime}$, as required.

A homomorphism is a total functional logical relation.
Solution of Problem 2.13.12 "Lyndon's theorem". The "if" direction has been proved in Problem 2.11.3 "Fundamental property".

For the "only if" direction, assume φ is preserved under surjective homomorphisms. W.l.o.g. we assume that the signature contains a single unary relational symbol R. We express that φ is preserved under surjective homomorphisms within the logic. If $h: A \rightarrow B$ is a surjective homomorphism from \mathfrak{A} onto \mathfrak{B}, then \mathfrak{B} is obtained from \mathfrak{A} by 1) introducing an equivalence relation $\approx \subseteq A \times A$ on the elements of $A\left(a \approx a^{\prime}\right.$ iff $\left.h(a)=h(b)\right)$, and 2) extending $R^{\mathfrak{A}}$ with new elements in a \approx-compatible manner. Let R^{\prime} be a copy of R. The following the sentence axiomatises the two conditions above:

$$
\begin{aligned}
\psi \equiv & \forall x \cdot x \approx x \wedge \\
& \forall x, y \cdot x \approx y \rightarrow y \approx x \wedge \\
& \forall x, y, z \cdot x \approx y \wedge y \approx z \rightarrow x \approx z \wedge \\
& \forall x \cdot R(x) \rightarrow R^{\prime}(x) \wedge \\
& \forall x, y \cdot R^{\prime}(x) \wedge x \approx y \rightarrow R^{\prime}(y) .
\end{aligned}
$$

Let $\varphi^{\prime} \equiv \varphi\left[R \mapsto R^{\prime}\right][=\mapsto \approx]$ be obtained from φ by replacing R with R^{\prime} and equality with \approx.
Claim. The formula φ is preserved under surjective homomorphisms if, and only if, $\vDash \varphi \wedge \psi \rightarrow \varphi^{\prime}$.

The common symbols between $\varphi \wedge \psi$ and φ^{\prime} are only R^{\prime} and \approx, however only R^{\prime} appears positively in both. By Lyndon's interpolation theorem, there exists an interpolant ξ using only R^{\prime} positively, and thus ξ is a positive formula. By definition, $\vDash \varphi \wedge \psi \rightarrow \xi$ and $\vDash \xi \rightarrow \varphi^{\prime}$. By taking " R " to be " R " and " \approx " to be " $=$ ", we obtain, as required,

$$
\vDash \varphi \leftrightarrow \xi .
$$

Solution of Problem 2.13.13 "Eoś-Tarski's theorem". For the "if" direction, note that \mathfrak{B} is an induced substructure of \mathfrak{A} if, and only if, there exists an injective, surjective, and faithful logical relation between \mathfrak{A} and \mathfrak{B}. Thanks to Problem 2.11.3 "Fundamental property", such a relation preserves all universal formulas.

Solution of Problem 2.13.14 "Robinson's joint consistency theorem". By Problem 2.9.1 "Compactess theorem", there exist finite nonempty sets $\Gamma^{\prime}=$ $\left\{\varphi_{1}, \ldots, \varphi_{m}\right\} \subseteq_{\text {fin }} \Gamma$ and $\Delta^{\prime}=\left\{\psi_{1}, \ldots, \psi_{n}\right\} \subseteq_{\text {fin }} \Delta$ s.t. $\Gamma^{\prime} \cup \Delta^{\prime}$ is unsatisfiable. It suffices to apply Problem 2.13.7 "Interpolation with equality" to $\varphi_{1} \wedge \cdots \wedge \varphi_{m} \vDash \neg \psi_{1} \vee \cdots \vee \neg \psi_{n}$.

2.14 Relational algebra

Solution of Problem 2.14.1. One solution is to use double negation $E \& F=$ $E-(E-F)$. If negation is not available, another solution is $E \& F=$ $\pi_{1, \ldots, n} \sigma_{1=n+1, \cdots, n=n+n}(E \times F)$.

Solution of Problem 2.14.2. A straightforward induction does the job:

$$
\begin{aligned}
\varphi_{\bar{a}}(\bar{x}) & \equiv x_{1}=a_{1} \wedge \cdots \wedge x_{k}=a_{k}, \\
\varphi_{R_{i}}(\bar{x}) & \equiv R_{i}(\bar{x}), \\
\varphi_{E+F}(\bar{x}) & \equiv \varphi_{E}(\bar{x}) \vee \varphi_{F}(\bar{x}), \\
\varphi_{E-F}(\bar{x}) & \equiv \varphi_{E}(\bar{x}) \wedge \neg \varphi_{F}(\bar{x}), \\
\varphi_{E \times F}(\bar{x}, \bar{y}) & \equiv \varphi_{E}(\bar{x}) \wedge \varphi_{F}(\bar{y}) \\
\varphi_{\sigma_{i=j}(E)}(\bar{x}) & \equiv \varphi_{E}(\bar{x}) \wedge x_{i}=x_{j}, \\
\varphi_{\pi_{i_{1}, \ldots, i_{k}}(E)}(\bar{x}) & \equiv \exists \bar{y} \cdot \varphi_{E}(\bar{y}) \wedge x_{1}=y_{i_{1}} \wedge \cdots \wedge x_{k}=y_{i_{k}}
\end{aligned}
$$

Solution of Problem 2.14.3. Consider a first-order formula φ over relational symbols $\Sigma=\left\{R_{1}, \ldots, R_{n}\right\}$. Let the domain of all relations be captured by the expression

$$
D=\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} \pi_{j}\left(R_{i}\right)
$$

We assume w.l.o.g. that in atomic formulas $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{k_{i}}}\right.$ all the indices are distinct; for example $R_{i}\left(x_{3}, x_{3}, x_{1}\right)$ can be expressed as $R_{i}\left(x_{2}, x_{3}, x_{1}\right) \wedge x_{2}=$ x_{3}. For every formula φ with m free variables and any dimension $n \geq m$, the corresponding relational expression $E_{\varphi, n}$ of dimension n is defined inductively as follows:

$$
\begin{aligned}
E_{R_{i}\left(x_{i_{1}}, \ldots, x_{i_{k_{i}}}\right), n} & =\pi_{j_{1}, \ldots, j_{n}}\left(R_{i} \times D^{n-k_{i}}\right), \\
E_{x_{i}=x_{j}, n} & =\sigma_{i=j} D^{n}, \\
E_{\varphi \vee \psi, n} & =E_{\varphi, n}+E_{\psi, n}, \\
E_{-\varphi, n} & =D^{n}-E_{\varphi, n}, \\
E_{\exists x_{i} . \varphi, n} & =\pi_{1, \ldots, i-1, i+1, \ldots, n}\left(E_{\varphi, n+1}\right),
\end{aligned}
$$

where j_{1}, \ldots, j_{n} is obtained as follows: Consider the partial permutation $\left(i_{1}, \ldots, i_{k_{i}}\right)$ from $\left\{i_{1}, \ldots, i_{k_{i}}\right\}$ to $\left\{1, \ldots, k_{i}\right\}$ and extend it arbitrarily to a permutation $\rho=\left(i_{1}, \ldots, i_{n}\right)$ on $\{1, \ldots, n\}$; then, $\left(j_{1}, \ldots, j_{n}\right)=\rho^{-1}$ is the inverse permutation of ρ.

Chapter 3

Second-order predicate logic

3.1 Expressiveness

Solution of Problem 3.1.1 "Finiteness". We axiomatise that every injective function on X is surjective, for every X, which is possible only in finite models (we will reuse the following definitions later):

$$
\begin{aligned}
\varphi_{\mathrm{fin}} & \equiv \forall X \cdot \varphi_{\mathrm{fin}}(X), \text { where } \\
\varphi_{\mathrm{rel}}(F, X, Y) & \equiv \forall x, y \cdot F(x, y) \rightarrow X(x) \wedge Y(y), \\
\varphi_{\mathrm{fun}}(F, X, Y) & \equiv \varphi_{\mathrm{rel}}(F, X, Y) \wedge \forall x, y, z \cdot F(x, y) \wedge F(x, z) \rightarrow y=z, \\
\varphi_{\mathrm{inj}}(F) & \equiv \forall x, y, z \cdot F(x, y) \wedge F(z, y) \rightarrow x=z, \\
\varphi_{\mathrm{surj}}(F) & \equiv \forall y \cdot \exists x \cdot F(x, y), \\
\varphi_{\mathrm{fin}}(X) & \equiv \forall F \cdot \varphi_{\mathrm{fun}}(F, X, X) \wedge \varphi_{\mathrm{inj}}(F) \rightarrow \varphi_{\mathrm{surj}}(F) .
\end{aligned}
$$

Finiteness cannot be axiomatised in \forall MSO. Towards reaching a contradiction, fix the empty signature $\Sigma=\operatorname{let} \varphi \equiv \forall X_{1}, \ldots, X_{n} . \psi$ (with ψ first-order) a purported \forall MSO formula axiomatising finiteness of models over Σ, and take an infinite model \mathfrak{A}. There are subsets A_{1}, \ldots, A_{n} of the domain s.t. $\mathfrak{A}, X_{1}: A_{1}, \ldots, X_{n}: A_{n} \vDash \neg \psi$. Since ψ is first-order and uses only equality, we can make the universe finite while preserving it. Let k be the rank of ψ. For every index set $I \subseteq\{1, \ldots, n\}$, consider $A_{I}=\bigcap_{i \in I} A_{i}$. The A_{I} 's partition the domain. We construct a finite model \mathfrak{B} by removing elements from \mathfrak{A} in such a way that every infinite A_{I} has
k elements in \mathfrak{B}. Let $B_{i} \subseteq A_{i}$ be obtained by restricting A_{i} to \mathfrak{B}. We have $\mathfrak{B}, X_{1}: B_{1}, \ldots, B_{n}: B_{n} \vDash \neg \psi$, and thus $\mathfrak{B} \not \vDash \varphi$, contradicting that φ expresses finiteness of the model.

Solution of Problem 3.1.2 "Countability". We axiomatise that every infinite subset of the domain has the same cardinality as the domain itself (where $\varphi_{\mathrm{inf}}(X) \equiv \neg \varphi_{\mathrm{fin}}(X)$ is an existential formula axiomatising infiniteness of X):

$$
\begin{aligned}
\varphi_{\text {count }} \equiv & \forall X, U \cdot(\forall x \cdot U(x)) \wedge \varphi_{\mathrm{inf}}(X) \rightarrow \\
& \exists F \cdot \varphi_{\mathrm{fun}}(F, X, U) \wedge \varphi_{\mathrm{inj}}(F) \wedge \varphi_{\mathrm{surj}}(F) .
\end{aligned}
$$

Solution of Problem 3.1.3 "Spectrum". Note that obviously

$$
\operatorname{Spec}(\varphi)=\operatorname{Spec}(\psi), \quad \text { with } \psi \equiv \exists R_{1}, \ldots, R_{n} \cdot \varphi
$$

where R_{1}, \ldots, R_{n} are all the elements of the signature of φ. Since the signature of ψ is empty and over the empty signature, for every cardinality $n \in \mathbb{N}$, there exists precisely a single structure of cardinality n (up to isomorphism), it follows that, for each $n \in \mathbb{N}$,

$$
n \in \operatorname{Spec}(\psi) \quad \text { if, and only if, } \quad n \notin \operatorname{Spec}(\neg \psi) .
$$

Solution of Problem 3.1.4. Take the signature and axioms of set theory, and an additional sentence saying that every element except the unit generates the whole group:

$$
\begin{aligned}
\forall x, X \cdot & (\exists y \cdot x \cdot y \neq y \wedge X(x) \wedge \forall y \cdot X(y) \rightarrow X(y \cdot x)) \\
& \rightarrow \forall y \cdot X(y) .
\end{aligned}
$$

3.1.1 Directed graphs

Solution of Problem 3.1.5 "Reachability for directed graphs". We express that E^{*} is the smallest relation including the identity and closed under composition with E :

$$
\begin{aligned}
\varphi_{E^{*}}(x, y) \equiv \forall R \cdot & (\forall x \cdot R(x, x) \wedge \\
& \forall x, y, z \cdot R(x, y) \wedge E(y, z) \rightarrow R(x, z)) \\
& \rightarrow R(x, y) .
\end{aligned}
$$

In fact, we can do better and show that y belongs to the set of vertices $E^{*}(x)$ reachable from x. The latter is the smallest set of vertices including x and closed under application of E, thus yielding a universal monadic formula:

$$
\psi_{E^{*}}(x, y) \equiv \forall F .(F(x) \wedge \forall x, y . F(x) \wedge E(x, y) \rightarrow F(y)) \rightarrow F(y)
$$

We can also find a (nonmonadic) existential formula by guessing a path (a certain set of edges R) from x to y :

$$
\begin{align*}
\chi_{E^{*}}(x, y) \equiv & \exists R \cdot x=y \vee \forall x, y \cdot R(x, y) \rightarrow E(x, y) \wedge \tag{3.1}\\
& R\left(x, __{-}\right) \wedge R\left(__{-}, y\right) \wedge \tag{3.2}\\
& \forall x, y, z \cdot R(x, y) \wedge R(x, z) \rightarrow y=z \wedge \tag{3.3}\\
& \forall x, y, z \cdot R(x, y) \wedge R(z, x) \rightarrow x=z \wedge \tag{3.4}\\
& \forall x \cdot x \neq y \wedge R\left(\left(_{-}, x\right) \rightarrow R\left(x,_{-}\right),\right. \text {where } \tag{3.5}\\
& R\left(\left(_{-}, x\right) \equiv \exists y \cdot R(y, x),\right. \text { and } \\
& R\left(x,,_{-}\right) \equiv \exists y \cdot R(x, y) .
\end{align*}
$$

Line (3.1) says that R is a set of edges, (3.2) says that R selects an edge with source x and an edge with target y,(3.3) says that at most one outgoing edge is selected from every source, (3.4) says the same for incoming edges, and (3.5) says that every node with an incoming edge must also have an outgoing edge, except for the destination y. On finite graphs, $\chi_{E^{*}}(x, y)$ holds precisely when there exists a path from x to y.

For infinite simple graphs, reflexive-transitive closure is not definable in existential monadic logic since the latter logic has the compactness property (c.f. Problem 3.2.1 "Compactness fails for $\forall S O$ ").

Solution of Problem 3.1.6 "Connectivity for directed graphs". From Problem 3.1.5 "Reachability for directed graphs", there is a $\forall \mathrm{MSO}$ formula $\forall R . \varphi(x, y)$, with φ first-order, expressing reachability. Thus, $\forall x, y . \forall R . \varphi(x, y)$ expresses strong connectivity, and the latter formula is equivalent to the \forall MSO formula $\forall R . \forall x, y . \varphi(x, y)$.

Similarly, there is an $\exists \mathrm{SO}$ formula $\exists R . \varphi(x, y)$, with φ first-order and R binary, expressing reachability. Connectivity can be expressed by $\forall x, y \cdot \exists R \cdot \varphi(x, y)$, which is not yet a $\exists \mathrm{SO}$ formula. We can commute

directed graphs	reachability	connectivity
\forall MSO	$\checkmark(3.1 .5)$	$\checkmark(3.1 .6)$
\exists SO	$\checkmark(3.1 .5)$	$\checkmark(3.1 .6)$
\exists MSO	no	no [14]

Figure 3.1: Expressing reachability/connectivity in directed graphs.
the quantifiers by adding two extra arguments to R, obtaining a four-ary relation $S\left(__{-}, x, y\right)$ effectively representing a family of binary relations indexed by pairs (x, y). This argument yields the \exists SO formula $\exists S . \forall x, y \cdot \varphi^{\prime}$, where φ^{\prime} is obtained from φ by replacing every atomic formula of the form $R(u, v)$ by $S(u, v, x, y)$.

Solution of Problem 3.1.7 "Eulerian cycles in $\exists S O$ ". Over directed graphs, it is well-known that there exists an Eulerian cycle if, and only if, the graph is connected and for every vertex the number of incoming edges (indegree) is the same as the number of outgoing ones (outdegree). The first property can be expressed in $\exists \mathrm{SO}$ thanks to Problem 3.1.6 "Connectivity for directed graphs". For the second property, we can express that $f\left(u,{ }_{-},{ }_{-}\right)$is a family of bijections (indexed by vertices u 's) between the set of edges entering u and the set of edges exiting u. (Over simple graphs, the latter property boils down to the fact that the degree of every vertex is even.) The latter property can be expressed in $\exists \mathrm{SO}$.

Solution of Problem 3.1.8 "Hamiltonian cycles in $\exists S O$ ". We can express the existence of an Hamiltonian cycle by guessing a total order R of vertices in the graph, which refines the edge relation:

$$
\forall x, y . R(x, y) \wedge(\forall z \cdot R(x, z) \wedge R(z, y) \rightarrow z=x \vee z=y) \rightarrow E(x, y)
$$

By Fagin's theorem [13, point 1 of Theorem 6], properties expressible in $\exists \mathrm{SO}$ coincide with the complexity class NPTIME, and thus $\forall \mathrm{SO}$ coincide with coNPTIME. Since Hamiltonicity is NPTIME-complete, if it was expressible in $\forall S O$, then it would be in coNPTIME, and NPTIME $=$ coNPTIME.

Solution of Problem 3.1.9. We can directly define 3-colourability as:

$$
\begin{aligned}
& \exists X, Y, Z . \forall x \cdot(X(x) \vee Y(x) \vee Z(x)) \wedge \\
& \forall x \cdot \neg(X(x) \wedge Y(x)) \wedge \neg(Y(x) \wedge Z(x)) \wedge \neg(X(x) \wedge Z(x)) \wedge \\
& \forall x, y \cdot E(x, y) \rightarrow \neg(X(x) \wedge X(y)) \wedge \neg(Y(x) \wedge Y(y)) \wedge \neg(Z(x) \wedge Z(y))
\end{aligned}
$$

Solution of Problem 3.1.10 "The Church-Rosser property is MSO definable". Thanks to Problem 3.1.5 "Reachability for directed graphs" there exists a \forall MSO formula of two free first-order variables $\varphi_{\rightarrow^{*}}(x, y)$ expressing that there is a path from x to y. With such a formula in hand, the Church-Rosser property can be expressed directly with the sentence

$$
\varphi_{\mathrm{CR}} \equiv \forall x, y, z \cdot \varphi_{\rightarrow^{*}}(x, y) \wedge \varphi_{\rightarrow^{*}}(x, z) \rightarrow \exists t \cdot \varphi_{\rightarrow^{*}}(y, t) \wedge \varphi_{\rightarrow^{*}}(z, t)
$$

Solution of Problem 3.1.11 "Strong normalisation is MSO definable". We express the fact that E is not strongly normalisable as

$$
\exists X . \exists x \cdot X(x) \wedge \forall x \cdot X(x) \rightarrow \exists y \cdot E(x, y) \wedge X(y)
$$

3.1.2 Simple graphs

Solution of Problem 3.1.12. We can express that there is an undirected path from x to y by guessing a set of vertices U s.t. (3.6) x has exactly one neighbour in U, (3.7) y has exactly one neighbour in U, (3.8) every element in U has exactly two neighbours in U (c.f. figure):

$$
\begin{align*}
& \varphi_{E^{*}}(x, y) \equiv \exists U . \\
& \exists!z \cdot E(x, z) \wedge U(z) \wedge \tag{3.6}\\
& \exists!z \cdot E(z, y) \wedge U(z) \wedge \tag{3.7}\\
& \forall z \cdot U(z) \rightarrow \exists u, v \cdot u \neq v \wedge E(z, u) \wedge E(z, v) \wedge U(u) \wedge U(v) . \tag{3.8}
\end{align*}
$$

Over finite simple graphs, the set U is interpreted as a undirected path from x to y, plus addionally some cycles.

An analogous formula for directed graphs fails because there may be back-edges along the directed path. In fact, there is no monadic existential formula expressing transitive closure over directed finite graphs [1].

simple graphs	reachability	connectivity
\forall MSO	\checkmark	\checkmark
\exists SO	\checkmark	$\checkmark(3.1 .13)$
\exists MSO	$\checkmark(!, 3.1 .12)$	no (3.1.13)

Figure 3.2: Expressing reachability/connectivity in simple graphs.

Solution of Problem 3.1.13 "Connectivity for simple graphs". Thanks to Problem 3.1.12, let $\varphi_{E^{*}}(x, y)$ be an $\exists \mathrm{MSO}$ formula for reachability in the graph. We can express that the graph is connected as:

$$
\varphi_{\mathrm{conn}} \equiv \forall x, y \cdot \varphi_{E^{*}}(x, y)
$$

Notice that the formula above is not existential. Moreover, if we were to pull out the existential monadic quantifier $\exists U$ from $\varphi_{E^{*}}$, upon commutation with $\forall x, y$ it would give rise to an existential quantifier $\exists U^{\prime}$ where U^{\prime} would be a relation of arity three.

In fact, connectivity for simple graphs is not expressible in $\exists \mathrm{MSO}$. It is known that connectivity for directed graphs cannot be expressed in $\exists \mathrm{MSO}$ [14]. If we had a formula ψ for connectivity, then we could relativise it to a set of vertices X by replacing all first-order quantifications $\exists x \ldots$ with $\exists x . x \in X \wedge \cdots$, and second-order ones $\exists Y . \cdots$ with $\exists Y . Y \subseteq X \wedge \cdots$. Let $\psi(X)$ be this relativised formula. Then transitive closure can be expressed as $\varphi_{E^{*}}(x, y) \equiv \exists X . X(x) \wedge X(y) \wedge \psi(X)$. The latter formula is not $\exists \mathrm{MSO}$, but it can be put in the existential format by pulling out the quantifiers in ψ. This contradicts the fact that reachability on simple graphs is not expressible in $\exists \mathrm{MSO}$ (c.f. Problem 3.1.12).

Solution of Problem 3.1.14 "Graph minors in MSO". Let $G=(U, E)$ have vertices $U=\{1, \ldots, n \mid\}$, and let $H=(V, F)$. If G is a minor of H, then there are n pairwise disjoint nonempty sets of vertices $V_{1}, \ldots, V_{n} \subseteq V$ of H s.t. each induced subgraph $\left.H\right|_{V_{i}}$ is connected and, for every edge $(i, j) \in E$ in G, there are vertices $u \in V_{i}$ and $v \in V_{j}$ connected by an edge $(u, v) \in F$ in H. When G is fixed, we can express this condition directly in MSO. Let $\varphi_{\text {conn }}(X)$ be an MSO formula of one set variable X stating that the
subgraph induced by X is connected (a simple generalisation of $\varphi_{\text {conn }}$ from Problem 3.1.13 "Connectivity for simple graphs"). The required formula is then

$$
\begin{aligned}
\varphi_{G} \equiv & \exists V_{1}, \ldots, V_{n} \cdot \bigwedge_{i} \varphi_{\mathrm{conn}}\left(V_{i}\right) \wedge \exists v \cdot V_{i}(v) \wedge \\
& \bigwedge_{i \neq j}\left(\neg \exists v \cdot V_{i}(v) \wedge V_{j}(v)\right) \wedge \\
& \bigwedge_{(i, j) \in E} \exists u, v \cdot V_{i}(u) \wedge V_{j}(v) \wedge F(u, v) .
\end{aligned}
$$

Solution of Problem 3.1.15 "Planarity of finite simple graphs in MSO". By Wagner's theorem, a finite simpler graph is planar if, and only if, it has neither the complete graph K_{5} (clique of 5 vertices) nor $K_{3,3}$ (complete bipartite graph of $3+3$ vertices) as a minor. By Problem 3.1.14 "Graph minors in MSO" there are closed MSO formulas $\varphi_{K_{5}}$ and $\varphi_{K_{3,3}}$ expressing the existence of the respective minor. Then planarity is expressed by $\neg \varphi_{K_{5}} \wedge \neg \varphi_{K_{3,3}}$.

3.1.3 MSO on trees

Solution of Problem 3.1.16. Let path (x, X) be an auxiliary formula stating that X is a path rooted at x :

$$
\begin{aligned}
\operatorname{path}(x, X) \equiv & X(x) \wedge \\
& \forall y \cdot X(y) \rightarrow \exists!z \cdot X(z) \wedge(L(y, z) \vee R(y, z)) \wedge \\
& \forall y \cdot X(y) \wedge y \neq x \rightarrow \exists z \cdot X(z) \wedge(L(z, y) \vee R(z, y)) .
\end{aligned}
$$

Then, the required formula is

$$
\begin{aligned}
& \exists x, X \cdot \operatorname{path}(x, X) \wedge \\
& \forall y \cdot X(y) \rightarrow \exists Y \cdot \operatorname{path}(y, Y) \wedge \exists z \cdot U(z) \wedge X(z) \wedge Y(z)
\end{aligned}
$$

3.1.4 MSO on free monoids

Solution of Problem 3.1.17. We translate a given regular expression r into an MSO formula $\varphi_{r}(x)$ of one free first-order variable x by structural
induction on r :

$$
\begin{aligned}
\varphi_{\varepsilon}(x) & \equiv x=\varepsilon \\
\varphi_{a}(x) & \equiv x=a, \\
\varphi_{b}(x) & \equiv x=b, \\
\varphi_{s \cup t}(x) & \equiv \varphi_{s}(x) \vee \varphi_{t}(x), \\
\varphi_{s^{*}}(x) & \equiv \forall X \cdot\left(X(\varepsilon) \wedge \forall x, y \cdot X(x) \wedge \varphi_{s}(y) \rightarrow X(x \cdot y)\right) \rightarrow X(x) .
\end{aligned}
$$

In the last case, we encode Kleene star with a least fixpoint construction.
Solution of Problem 3.1.18. The language of squares $L=\left\{w \cdot w \mid w \in \Sigma^{*}\right\}$ is not regular and it is definable by $\varphi(x) \equiv \exists y \cdot x=y \cdot y$.

Solution of Problem 3.1.19. Let G be a context-free grammar with nonterminals X_{1}, \ldots, X_{n}, where X_{1} is the initial nonterminal. We assume w.l.o.g. that G is in Chomsky normal form, i.e., all productions are of the form either $X_{i} \leftarrow X_{j} \cdot X_{k}$, or $X_{i} \leftarrow \varepsilon$ or $X_{i} \leftarrow a$, where $a \in \Sigma$ is a terminal symbol. The required formula $\varphi(x)$ is

$$
\begin{aligned}
\forall X_{1}, \ldots, X_{n} \cdot & \left(\left(\bigwedge_{X_{i} \leftarrow X_{j} \cdot X_{k}} \forall y, z \cdot X_{j}(y) \wedge X_{k}(z) \rightarrow X_{i}(y \cdot z)\right) \wedge\right. \\
& \left(\bigwedge_{X_{i} \leftarrow a} X_{i}(a)\right) \wedge \\
& \left.\bigwedge_{X_{i} \leftarrow \varepsilon} X_{i}(\varepsilon)\right) \rightarrow X_{1}(x) .
\end{aligned}
$$

3.2 Failures

Solution of Problem 3.2.1 "Compactness fails for $\forall S O$ ". Consider the set of sentences

$$
\Gamma=\left\{\varphi_{\geq 1}, \varphi_{\geq 2}, \cdots\right\} \cup\left\{\varphi_{\text {fin }}\right\}
$$

obtained by adding the finiteness axiom $\varphi_{\text {fin }}$ from Problem 3.1.1 "Finiteness" (which is a $\forall S O$ sentence, but not an $\forall M S O$ one) to the cardinality lowerbound constraints $\varphi_{\geq n}$ from Problem 2.1.6 "Cardinality constraints I". Every finite subset of Γ has a finite model, however Γ has no model.

The existential fragment of second-order logic satisfies the compactness theorem. An existential sentence $\exists R_{1}, \ldots, R_{n} . \varphi$, with φ first-order, has the same models as φ, and the same holds for a set Γ of such sentences after all the R_{i} 's have been made globally fresh (one can think of R_{i} to be a name local to φ, and renaming is necessary if the same R_{i} appears in another sentence) Consider the set of first-order sentences $\widehat{\Gamma}$ obtained by removing the second-order quantifier prefix from sentences in Γ :

$$
\begin{equation*}
\widehat{\Gamma}=\left\{\varphi \mid \exists R_{1}, \ldots, R_{n} . \varphi \in \Gamma, \varphi \text { first-order }\right\} . \tag{3.9}
\end{equation*}
$$

It suffices to apply the compactness theorem for first-order logic to $\widehat{\Gamma}$.

Solution of Problem 3.2.2 "Skolem-Löwenheim and SO". The Skolem-Löwenheim theorem does not hold in second-order logic (neither the upper nor the lower variant), since one can axiomatise countability of the model in SO (c.f. Problem 3.1.2 "Countability").

A Skolem-Löwenheim theorem for existential second-order logic follows from its first-order counterpart. Suppose that Γ is a set of existential second-order sentences over an at most countable signature Σ with an infinite model \mathfrak{A}, and let \mathfrak{m} be any infinite cardinality. We can assume w.l.o.g. that Γ contains no two sentences differing only by the names of their quantified second order variables (by removing the redundant ones). Consequently, the cardinality of the set of quantified variables does not exceed the cardinality of the set of all sentences. As in Problem 3.2.1 "Compactness fails for $\forall S O$ ", make the second order variables globally fresh, and let $\widehat{\Gamma}$ be obtained from Γ according to (3.9). The set $\widehat{\Gamma}$ is an at most countable set of first-order sentences over a possibly larger but still countable signature. Moreover, $\widehat{\Gamma}$ is satisfiable, as witnessed by a suitable expansion $\widehat{\mathfrak{A}}$ of \mathfrak{A} with additional interpretations $R_{i}^{\widehat{\mathfrak{A}}}$ for the existential second order variables R_{i} 's from Γ. By the Skolem-Löwenheim theorem for first-order logic, $\widehat{\Gamma}$ has a model \mathfrak{B} of cardinality \mathfrak{m}. It is also a model of Γ, where each existential second order quantifier $\exists R_{i}$ is witnessed by its interpretation $R_{i}^{\mathfrak{B}}$ in \mathfrak{B}.

A Skolem-Löwenheim theorem for universal second-order logic over the empty signature follows immediately from the previous point since, 1) if $\varphi \equiv \forall X_{1}, \ldots, X_{n} . \psi$ with ψ first-order is universal, then $\neg \varphi$ is existential, and 2) when the signature is empty there is precisely one model of each
cardinality (up to isomorphism), so φ has a model of cardinality \mathfrak{m} if, and only if, $\neg \varphi$ has no model of cardinality \mathfrak{m}.

Finally, the theorem fails for universal second-order logic over the nonempty signature. For example, if we have the constant 0 and a unary function s, then the following sentence has only countable models:

$$
\begin{array}{ll}
\forall X \cdot(X(0) \wedge \forall y \cdot X(y) \rightarrow X(s(y))) \rightarrow \forall y \cdot X(y) \wedge & \text { (induction principle) } \\
\forall x \cdot s(x) \neq 0 \wedge & \text { (initial element) } \\
\forall x, y \cdot s(x)=s(y) \rightarrow x=y . & \text { (injectivity) }
\end{array}
$$

Thus the upward variant of the theorem fails.
Also the downward variant fails, since with a binary relation " $<$ " one can write a second-order sentence φ has only uncountable models. Let $\varphi_{\text {dlo }}=\wedge \Delta_{\text {dlo }}$ be the (first-order) axioms for dense linear orders without endpoints (c.f. Problem 4.2.7 "Quantifier elimination for dense total order"). For a monadic second-order variable X and a first-order variable x, we write $X \leq x$ for $\forall y . X(y) \rightarrow y \leq x$. Consider the universal sentence
$\varphi_{\mathrm{dlo}} \wedge \forall X .(\exists x \cdot X \leq x) \rightarrow \exists x . X \leq x \wedge \forall y . X \leq y \rightarrow x \leq y . \quad$ (completeness)
(The last condition says that every set with an upper bound has a least upper bound.) The sentence above has only uncountable models. Indeed, suppose to the contrary that there is a countable model. However, any countable dense linear order without endpoints is isomorphic to (\mathbb{Q}, \leq), which does not satisfy the completeness statement - a contradiction. On the other hand (\mathbb{R}, \leq) is a model of this sentence. Thus, the downward variant of the Skolem-Löwenheim theorem fails for second-order logic over the nonempty signature.

3.3 Word models

Solution of Problem 3.3.3. We express the existence of an accepting run. Let the automaton A be over the alphabet $\Sigma=\{1, \ldots, n\}$ and have m states $Q=\{1, \ldots, m\}$. We introduce m MSO variables X_{1}, \ldots, X_{m} s.t. $x \in X_{i}$ iff when reading the input at position x the automaton is in state i. With
this interpretation, we can write the following sentence:

$$
\begin{aligned}
\varphi \equiv & \exists X_{1}, \ldots, X_{m} \cdot \forall x \cdot \bigvee_{i} X_{i}(x) \wedge \bigwedge_{i \neq j} X_{i} \cap X_{j}=\varnothing \wedge & & \text { (partition) } \\
& \bigvee_{i \in I} X_{i}(0) \wedge & & \text { (initial state) } \\
& \forall x \cdot \bigwedge_{i \in Q, a \in \Sigma} X_{i}(x) \wedge P_{a}(x) \rightarrow \bigvee_{i \rightarrow 2}^{\bigvee_{i}} X_{j}(x+1) \wedge & & \text { (transitions) } \\
& \forall x \cdot \bigwedge_{i \in Q, a \in \Sigma} X_{i}(x) \wedge P_{a}(x) \wedge \operatorname{last}(x) \rightarrow \bigvee_{i \xrightarrow{a} j \in F}^{\bigvee} \text { T. } & & \text { (final state) }
\end{aligned}
$$

We use last (x) to denote that x is the last position in the model. This can be expressed by, e.g., $\forall y . x \leq y \rightarrow x=y$. We use $X_{j}(x+1)$ as an abbreviation for $\forall y . x<y \wedge \neg(\exists z . x<z<y) \rightarrow X_{j}(y)$.

Solution of Problem 3.3.4. Let A be an NFA with k states $Q=\{0, \ldots, k-1\}$ over alphabet Σ. For simplicity, we show the idea when the input is a multiple of $p=2 \cdot k+2$, i.e., we show that there exists an $\exists \mathrm{MSO}$ sentence of the form $\exists X . \psi$ with ψ first-order s.t. $L(A) \cap \Sigma^{p}=\llbracket \varphi \rrbracket$. The idea is to read the input p letters at a time. We represent the content of the second-order variable X as a sequence $z_{0} z_{1} \cdots \in\{0,1\}^{\omega}$ s.t. $n \in X$ iff $z_{n}=1$. If after reading the $p \cdot i$-th letter $a_{p \cdot i}$ the automaton is in state $j \in Q$, then the bits $z_{p \cdot i} \cdots z_{p \cdot(i+1)-1}$ are precisely of the form

$$
1100 \cdots 000100 \cdots 00
$$

The first two bits " 11 " are a marker delimiting the beginning of the block, and each pair of subsequent bits encodes a state. One can write the required sentence $\varphi \equiv \exists X . \psi$ checking that 1) each block has length p and starts with the control bits $11 ; 2$) after the control bits, all the bit pairs are either of the form 00 or $01 ; 3$) exactly one of them is of the form 01 (encoding that the automaton is in state j); 4) if the current block encodes that the automaton is in state j; and positions $p \cdot i, \ldots,(p \cdot(i+1)-1)$ are labelled by letters a_{1}, \ldots, a_{p}, then the next block encodes that the automaton is in some state j^{\prime} s.t. $\left.j \xrightarrow{a_{1} \cdots a_{p}} j^{\prime} ; 5\right)$ the first block encodes that the automaton is in an initial state; 6) the last block encodes that the automaton is in a final state. We omit giving the sentence φ explicitly.

Solution of Problem 3.3.5 "Star-free regular languages in first-order logic". We proceed by structural induction on start-free expressions:

$$
\begin{aligned}
\varphi_{a}(x, y) & \equiv x<y \wedge P_{a}(x) \\
\varphi_{\Sigma^{*}}(x, y) & \equiv x \leq y \\
\varphi_{e \cup f}(x, y) & \equiv \varphi_{e}(x, y) \vee \varphi_{f}(x, y) \\
\varphi_{e \cdot f}(x, y) & \equiv \exists(x \leq z \leq y) \cdot \varphi_{e}(x, z) \wedge \varphi_{f}(z, y), \\
\varphi_{\Sigma \backslash e}(x, y) & \equiv \neg \varphi_{e}(x, y)
\end{aligned}
$$

Solution of Problem 3.3.6. We introduce new atomic formulas:

$$
\begin{align*}
X \subseteq Y & \equiv \forall x \cdot X(x) \rightarrow Y(x), \tag{3.10}\\
X \subseteq P_{a} & \equiv \forall x \cdot X(x) \rightarrow P_{a}(x), \tag{3.11}\\
X \leq Y & \equiv \forall x, y \cdot X(x) \wedge Y(y) \rightarrow x \leq y, \text { and } \tag{3.12}\\
\text { singleton }(X) & \equiv \exists x \cdot X(x) \wedge \forall y \cdot X(y) \rightarrow y=x . \tag{3.13}
\end{align*}
$$

We associate to a first-order variable a fresh second-order variable V_{x}. We define an inductive translation [_] from MSO formulas φ to formulas [φ] without first-order variables (modulo the new atomic formulas above):

$$
\begin{aligned}
{[x \leq y] } & \equiv V_{x} \leq V_{y}, \\
{\left[P_{a}(x)\right] } & \equiv V_{x} \subseteq P_{a} \\
{[X(x)] } & \equiv V_{x} \subseteq X, \\
{[\exists x \cdot \varphi] } & \equiv \exists V_{x} \cdot \text { singleton }\left(V_{x}\right) \wedge[\varphi] .
\end{aligned}
$$

The other connectives $\forall x, \exists X, \forall X, \wedge, \vee \neg$ follow a similar pattern.

Solution of Problem 3.3.8. For each atomic formula φ from (3.10)-(3.13) one can build an equivalent NFA A_{φ}. Connectives \vee, \wedge, \neg can be handled using the fact that NFA-recognisable languages are closed under Boolean operations. Finally, $\exists X_{k} \cdot \varphi$ is handled by 1) inductively constructing an NFA A_{φ} over Σ_{k} equivalent to φ, and 2) projecting away the k-bit by replacing every transition in A_{φ} of the form $q \xrightarrow{\left(a, b_{1}, \ldots, b_{k}\right)} q^{\prime}$ by $q \xrightarrow{\left(a, b_{1}, \ldots, b_{k-1}\right)}$ q^{\prime} (this operation possibly introduces nondeterminism).

Solution of Problem 3.3.9 "c.f. [20, 27]". We will work with regular expressions with complementation as a convenient tool, which can of course be converted succinctly into equivalent MSO formulas along the lines of Problem 3.3.3. Let $f(0)=1$ and $f(n+1)=2^{f(n)} \cdot(f(n)+1)+1$, and assume the alphabet is of the form $\Sigma=\{0,1, \$\}$. We will construct a family of regular expressions with complementation e_{0}, e_{1}, \ldots s.t. e_{n} generates exactly the singleton language

$$
L\left(e_{n}\right)=\left\{0^{f(n)}\right\} .
$$

The base case is simple enough: $e_{0}=0$. For the inductive case, assume e_{n} has already been constructed, and we proceed to construct e_{n+1}. First, we construct an expression f_{n} that generates a single word of length $f(n+1)$ by implementing a binary counter of $f(n)$ bits:

$$
L\left(f_{n}\right)=\left\{\$ w_{0} \$ w_{1} \$ \cdots \$ w_{2 f(n)} \$\right\}
$$

where each $w_{i} \in\{0,1\}^{f(n)}$ is a sequence of $f(n)$ bits and the number encoded by w_{i+1} is the successor of that encoded by w_{i} (thus $w_{0}=00 \cdots 0$, $w_{2^{f(n)}}=11 \cdots 1$, and so on). If we are able to construct f_{n}, then we can obtain e_{n+1} from f_{n} by applying the morphism mapping all letters to 0 . In turn, $f_{n}=\Sigma^{*} \backslash g_{n}$ is constructed as the complement of another expression g_{n}. The task for g_{n} is easier, because it suffices to find mistakes in the counter above. One kind of mistake is that a 0 in w_{i} is followed by a 0 in the corresponding position in w_{i+1}. In order to verify such a mistake, we can use the inductively constructed e_{n} in order to reliably skip the $f(n)+1$ symbols necessary to go from one position in w_{i} to the corresponding position in w_{i+1}.

Solution of Problem 3.3.10. No, the language of palindromes is not MSO definable. If it were so, then by Problem 3.3.8 it would be recognisable by a finite automaton, which can be shown not to be the case by a pumping argument.

Solution of Problem 3.3.11. No, the language $L=\llbracket \varphi \rrbracket$ is not regular. In order to see this, consider the language $M=L \cap a^{*} b^{*}$, which contains precisely all words of the form $a^{n} b^{n}$ with $n \geq 1$. A standard pumping argument shows that M is not regular, and since regular languages are closed under intersection, L is not regular either.

Solution of Problem 3.3.12. Suppose that such a φ exists. We are going to demonstrate that it can be used to define a nonregular language of word-models, contradicting Problem 3.3.8. First, we express that z is the middle position in the word:

$$
\operatorname{mid}(z) \equiv \exists x \cdot \forall y \cdot y \leq x \wedge z \neq x \wedge \varphi(z, z+1, x)
$$

We can now define the nonregular language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ with the sentence

$$
\exists z \cdot \operatorname{mid}(z) \wedge \forall y \cdot\left(y \leq z \rightarrow P_{a}(y)\right) \wedge\left(y>z \rightarrow P_{b}(y)\right) .
$$

3.4 Miscellaneous problems

Solution of Problem 3.4.1 "Elementary separability of projective classes".
Let C_{1} be the projective class of models of $\exists \bar{R} . \varphi$ and C_{2} that of $\exists \bar{T} \cdot \psi$, where φ, ψ are sentences of first-order logic. Since C_{1}, C_{2} are disjoint, $\vDash \neg(\exists \bar{R} . \varphi \wedge \exists \bar{T} \cdot \psi)$, and thus $\vDash \varphi \rightarrow \neg \psi$. By Craig's interpolation theorem (c.f. Problem 2.13.6 "Interpolation for formulas without equality"), there exists an interpolant ξ defining an elementary class separating C_{1} from C_{2}.

Solution of Problem 3.4.2. Consider the formula $\mathrm{cl}(X)$ stating that X contains 0 and is closed under successor and predecessor:

$$
\mathrm{cl}(X) \equiv X(0) \wedge \forall n \cdot X(n) \rightarrow X(n+1) \wedge \exists m \cdot n=m+1 \wedge X(m)
$$

There are many sets satisfying $\mathrm{cl}(X)$, e.g., \mathbb{Z} (the least such set), \mathbb{Q}, \mathbb{R} among others. We now express that x is of the form p / q for some $p, q \in X$, and this holds for every closed X, and in particular for the least such set \mathbb{Z}, yielding the following $\forall \mathrm{MSO}$ formula:

$$
\varphi(x) \equiv \forall X \cdot \mathrm{cl}(X) \rightarrow \exists p, q \cdot X(p) \wedge X(q) \wedge p \neq 0 \wedge x \cdot q=p
$$

Chapter 4

The decision problem

4.1 Finite model property

Solution of Problem 4.1.2 "Finite model property". Yes. By completeness, exactly one of $\varphi, \neg \varphi$ is in Γ, and thus it suffices to run two procedures in parallel, one looking for a finite counterexample to $\Gamma \cup\{\varphi\}$ and one for $\Gamma \cup\{\neg \varphi\}$.

Solution of Problem 4.1.3 "Small model property for the $\exists^{*} \forall^{*}$-fragment". If φ has a model, then it has a model of size $\leq m$: If the universal quantifiers are satisfied in a model of larger size, then they are trivially satisfied in any smaller structure containing witnesses for the x_{i} 's (c.f. Problem 2.11.4 "Preservation for $\exists^{*} \forall^{*}$-sentences").

If ψ contains a single functional symbol f, then we can already express infiniteness of the model in the $\exists^{*} \forall^{*}$-fragment (c.f. Problem 2.3.5).

Solution of Problem 4.1.4 "Small model property for monadic logic". If φ is satisfiable, then it has a model of size $\leq 2^{k}$: Any set of elements satisfying the same set of predicates can be collapsed into a single element, and this operation is model-preserving.

4.2 Quantifier elimination

Solution of Problem 4.2.2. It suffices to transform the input formula in PNF + NNF, and then eliminate the quantifiers starting from the innermost one. A universal quantifier is transformed into an existential one by double negation, and existential quantifiers are distributed over arbitrary disjunctions, and over conjunctions with formulas not containing x.

Solution of Problem 4.2.3 "Quantifier elimination and completeness". Let φ be any sentence over Σ. By performing quantifier elimination we obtain an equivalent variable-free formula, which in a language without constants is either T or \perp. In the first case, $\varphi \in \Gamma$ and in the second case $\varphi \notin \Gamma$, thus showing that Γ is complete.

4.2.1 Equality

Solution of Problem 4.2.4 "Löwenheim (1915)". Thanks to Problem 4.2.2 it suffices to remove an existential quantifier in front of a sequence of equalities and their negations

$$
\exists x \cdot x=y_{1} \wedge \cdots \wedge x=y_{m} \wedge x \neq z_{1} \wedge \cdots \wedge x \neq z_{n}
$$

Trivial equalities $x=x$ are replaced with T , and trivial disequalities $x \neq x$ by \perp. We can thus assume no atomic formula is trivial, i.e., no variable y_{i}, z_{j} is x. If there exists at least one equality $m \geq 1$, then we replace $x=y_{1}$ with T and x by y_{1} in all the other equalities and inequalities. If there is no equality $m=0$, then since the domain A is infinite there is always a choice for x_{1} satisfying all the inequalities, which can be thus replaced with T.

On the other hand, if A is finite, then there is no quantifier-free formula equivalent to $\psi(y) \equiv \exists y \cdot x \neq y$. The formula $\psi(y)$ holds in a valuation ρ if, and only if, the models has size at least two. Evidently, there is no quantifier-free formula φ with one free variable y over the signature containing just the equality symbol with this property.

4.2.2 One unary function

Solution of Problem 4.2.6 "2-cycles". The sentence φ says that the domain is a disjoint union of cycles of length 2 . Terms in the language of one function symbol f are of the form $f^{n}(x)$ with x a variable, and thus atomic formulas are of the form $f^{m}(x)=f^{n}(y)$ or $f^{m}(x) \neq f^{n}(y)$, where in general x and y may be the same variable. By the definition of f, we can always normalise such atomic formulas to be of the form $x=y$ or $x=f(y)$, and similarly for " \neq ". Thanks to Problem 4.2.2, it suffices to eliminate a single existential quantifier from a formula

$$
\exists x . x=u_{1} \wedge \cdots \wedge x=u_{m} \wedge x \neq v_{1} \wedge \cdots \wedge x \neq v_{n}
$$

We can assume w.l.o.g. that the r.h.s. u_{i}, v_{j} 's do not contain $x: x=x$ and $x \neq f(x)$ can be replaced by T , and $x=f(x)$ and $x \neq x$ by \perp. We conclude by the same solution of Problem 4.2.4 "Löwenheim (1915)". (Alternatively, we can replace all occurrences of $f(y)$ with a fresh variable y^{\prime} and add the definition $y^{\prime}=f(y)$, to which we can apply Problem 4.2.4 "Löwenheim (1915)".) The theory is complete thanks to Problem 4.2.3 "Quantifier elimination and completeness".

4.2.3 Dense total order

Solution of Problem 4.2.7 "Quantifier elimination for dense total order". By Problem 4.2.2, it suffices to eliminate an existential quantifier of the form

$$
\exists x . x \sim_{1} y_{1} \wedge \cdots \wedge x \sim_{1} y_{n}
$$

where w.l.o.g. $\sim_{i} \in\{=,<\}$. All trivial equalities of the form $x=x$ are removed. If there is any inequality of the form $x<x$, then the entire formula reduces to \perp. Thus, we can assume that no y_{i} is x. If there exists any equality $x=y_{i}$, then we can just replace it with T and replace x with y_{i} in the remaining atomic formulas (if any). Otherwise, there are only inequalities, which can be split into lower and upper bounds:

$$
\exists x \cdot \underbrace{y_{1}<x \wedge \cdots \wedge y_{m}<x}_{\text {lower bounds }} \wedge \underbrace{x<z_{1} \wedge \cdots \wedge x<z_{n}}_{\text {upper bounds }}
$$

The equivalent quantifier-free formula is then

$$
\bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} y_{i}<z_{j} .
$$

The formula above is T if either m or n is 0 , which is correct since the are no endpoints.

4.2.4 Discrete total order

Solution of Problem 4.2.8. If the only relation is " \leq ", then there is no quantifier-free formula equivalent to

$$
\varphi_{s}(x, y) \equiv x<y \wedge \forall z . x<z \rightarrow y \leq z
$$

This is the only obstacle to quantifier elimination: Adding the function symbol s (whose interpretation is provided by φ_{s}) yields a structure $\mathfrak{A}=$ (\mathbb{Z}, s, \leq) whose theory $\operatorname{Th}(\mathfrak{A})$ admits quantifier elimination. Notice that since the new symbol s can be interpreted in the original theory (by φ_{s}), $\operatorname{Th}(\mathbb{Z}, \leq)=\operatorname{Th}(\mathbb{Z}, s, \leq)$.

Terms in the language of \mathfrak{A} are of the form $s^{i}(x)$ where x a variable, and thus atomic formulas can always be written as $s^{m}(x) \leq s^{n}(y)$. By abusing notation, we allow terms $s^{z}(x)$ with $z \in \mathbb{Z}$. Thanks to Problem 4.2.2, it suffices to eliminate a single existential quantifier " $\exists x$ " in front of a conjunctive quantifier-free formula. Conjuncts where x appears on both sides of the inequality $s^{m}(x) \leq s^{n}(x)$ are replaced by \top if $m \leq n$, and by \perp otherwise. It remains to address conjuncts where x appears only on one side of the inequality. We conclude by splitting the set of inequalities into lower and upper bounds and reasoning as in the solution to Problem 4.2.7 "Quantifier elimination for dense total order". The theory is complete by Problem 4.2.3 "Quantifier elimination and completeness".

Solution of Problem 4.2.9. The least element is definable by the following universal formula, but it cannot be defined by a quantifier-free one:

$$
\varphi_{0}(x) \equiv \forall y . y \leq x \rightarrow y=x
$$

After adding the constant symbol 0 for the least element to the signature we obtain a structure $\mathfrak{A}=(\mathbb{N}, 0, s, \leq)$ whose theory enjoys elimination of quantifiers.

4.2.5 Rational linear arithmetic

Solution of Problem 4.2.10 "Fourier-Motzkin elimination". Every atomic formula in the language of rational arithmetic can be written in the form $u \sim v$ with $\sim \in\{=, \leq,<\}$, where u, v are terms obtained as linear combinations of the form

$$
c_{0} \cdot 1+c_{1} \cdot x_{1}+\cdots+c_{m} \cdot x_{n} .
$$

Enriching the language with unary functions " $(c \cdot)$ " is necessary to perform quantifier elimination: For instance, if $c=\frac{p}{q}$ would be omitted, then the following formula would not have a quantifier-free equivalent:

$$
\exists x \cdot y=x \wedge p \cdot x=q \cdot 1 .
$$

In order to perform quantifier elimination, we first transform each atomic formula $u \sim v$ into either one not containing x, or into the "solved form" $x \sim t$. After each atomic formula is solved, we can just replace each maximal term t by a fresh variable y_{t}, add a new defining equality $y_{t}=t$, and apply Problem 4.2.7 "Quantifier elimination for dense total order".

4.2.6 Integral linear arithmetic

Solution of Problem 4.2.11 "Presburger's logic". The following definable constants and relations need to be introduced because they have no quantifierfree equivalent in the language of " + ":

$$
\begin{align*}
\varphi_{0}(x) & \equiv \forall y \cdot x+y=y, & & \text { (zero) } \\
\varphi_{\leq}(x, y) & \equiv \exists z \cdot y=x+z, & & \text { (order } \tag{zero}\\
\varphi_{1}(x) & \equiv \forall y \cdot y<x+y \wedge \neg \exists z \cdot y<z<x+y, & & \text { (one) } \\
\text { frod } k(x, y) & \equiv \exists z \cdot x=y+k \cdot z \vee y=x+k \cdot z, & & \text { (mod }
\end{align*}
$$

where $k \cdot z$ with $k \in \mathbb{N}$ is an abbreviation for $z+\cdots+z$ (k times). We now show quantifier elimination for the theory of the structure in the extended language

$$
\left(\mathbb{N},+, 0,1, \leq,\left(\equiv_{k}\right)_{k \in \mathbb{N}_{20}}\right) .
$$

Terms in this language can be normalised as affine terms of the form

$$
a_{0}+a_{1} \cdot x_{1}+\cdots+a_{n} \cdot x_{n}, \quad a_{0}, a_{1}, \cdots \in \mathbb{N} .
$$

By Problem 4.2.2 it suffices to consider formulas of the form $\exists x . u_{1} \sim_{1}$ $v_{1} \wedge \cdots \wedge u_{m} \sim_{m} v_{m}$, where \sim_{i} is one of $=, \leq,<, \equiv_{1}, \equiv_{2}, \ldots$ or a negation thereof. Since $u \neq v$ is equivalent to $u<v \vee v<u$ and $u \not 三_{k} v$ to $u+1 \equiv_{k}$ $v \vee \cdots \vee u+k-1 \equiv_{k} v$, we can further assume that atomic formulas do not contain negations.

We can assume that all modulo constraints $\equiv_{m_{1}}, \ldots \equiv_{m_{k}}$ are over the same modulo: Let $M=\operatorname{lcm}\left\{m_{1}, \ldots, m_{k}\right\}$ and replace $u \equiv_{m_{i}} v$ by the equivalent

$$
u \equiv_{M} v+0 \cdot m_{i} \vee u \equiv_{M} v+1 \cdot m_{i} \vee \cdots \vee u \equiv_{M} v+\left(\frac{m}{m_{i}}-1\right) \cdot m_{i}
$$

We can normalise the set of (in)equalities to the partially solved forms

$$
a_{i} \cdot x=u_{i}, \quad a_{i} \cdot x \leq u_{i}, \quad u_{i} \leq a_{i} \cdot x, \quad a_{i} \cdot x \equiv_{M} u_{i}
$$

where each occurrence of x is multiplied by a possibly different coefficient $a_{i} \in \mathbb{N}$ and the u_{i} 's do not contain x.

Let $a=\operatorname{lcm}\left\{a_{1}, \ldots, a_{n}\right\}$ be the least common multiplier of the coefficients a_{i} 's of all the occurrences of x. We transform the partially solved forms into the solved forms

$$
a \cdot x=u_{i}, \quad a \cdot x \leq u_{i}, \quad u_{i} \leq a \cdot x, \quad a \cdot x \equiv_{M} u_{i},
$$

by multiplying each side of $a_{i} \cdot x \sim_{i} u_{i}$ by $\frac{a}{a_{i}} \in \mathbb{N}$. Now all occurrences of x share the same coefficient $a \cdot x$.

We can ensure that x 's coefficient is $a=1$ by adding an extra modulo constraint $x \equiv_{a} 0$ and replacing $a \cdot x$ with x in all atomic formulas.

We can ensure that x appears in at most one modulo constraint: If there is more than one modulo constraint $x \equiv_{M} u_{1} \wedge x \equiv_{M} u_{2} \wedge \cdots \wedge x \equiv_{M} u_{m}$, then we can replace it with

$$
x \equiv_{M} u_{1} \wedge u_{1} \equiv_{M} u_{2} \wedge \cdots \wedge u_{1} \equiv_{M} u_{m} .
$$

If there is any equality $x=u_{i}$, then x can be eliminated by removing this equality and replacing x with u_{i} throughout in the other atomic formulas. If there is no equality, then we have a system of inequalities and a single modulo constraint of the form

$$
\begin{array}{rlrl}
\exists x . & u_{1} & \leq x \wedge \cdots \wedge u_{m} \leq x \wedge & \\
& x & \text { (lower bounds) } \\
& x & v_{1} \wedge \cdots \wedge x \leq v_{n} \wedge & \\
\text { (upper bounds) } \\
& & \text { (modulo constraint) }
\end{array}
$$

We can assume w.l.o.g. that there exists at least one lower bound constraint $m \geq 1$ because over the naturals we can always add the constraint $0 \leq x$. The equivalent quantifier-free formula guesses the strongest (largest) lower bound u_{i} and checks that there exists a witness for x of the form $u_{i}+0, \ldots, u_{i}+M-1$:

$$
\begin{aligned}
\bigvee_{i=1}^{m} \bigvee_{k=0}^{M-1} & u_{1} \leq u_{i}+k \wedge \cdots \wedge u_{m} \leq u_{i}+k \wedge \\
& u_{i}+k \leq v_{1} \wedge \cdots \wedge u_{i}+k \leq v_{n} \wedge \\
& u_{i}+k
\end{aligned}
$$

4.3 Interpretations

4.3.1 Real numbers

Solution of Problem 4.3.3 "First-order theory of the complex numbers". The first-order theory of the complex numbers is decidable, and this can be proved by a two-dimensional interpretation in the real numbers. A complex number $a+i b \in \mathbb{C}$ is interpreted as the pair $(a, b) \in \mathbb{R} \times \mathbb{R}$. A formula φ in the language of \mathbb{C} is converted into a formula $[\varphi]$ in the language of $(\mathbb{R},+, \cdot, 0,1)$ by replacing every variable x into two copies x^{0}, x^{1} thereof corresponding to its real, resp., imaginary part. Formally, we define two translation functions $\left[_\right]^{0},\left[_\right]^{1}$ on terms

$$
\begin{aligned}
{[x]^{i} } & =x^{i}, & & i \in\{0,1\}, \\
{[u+v]^{i} } & =[u]^{i}+[v]^{i}, & & i \in\{0,1\}, \\
{[u \cdot v]^{0} } & =[u]^{0} \cdot[v]^{0}-[u]^{1} \cdot[v]^{1}, & & \\
{[u \cdot v]^{1} } & =[u]^{0} \cdot[v]^{1}+[u]^{1} \cdot[v]^{0}, & &
\end{aligned}
$$

and a translation function [_] on formulas

$$
\begin{aligned}
{[u=v] } & \equiv[u]^{0}=[v]^{0} \wedge[u]^{1}=[v]^{1}, \\
{[\varphi \wedge \psi] } & \equiv[\varphi] \wedge[\psi], \\
{[\neg \varphi] } & \equiv \neg[\varphi], \\
{[\exists x \cdot \varphi] } & \equiv \exists x^{0}, x^{1} \cdot[\varphi] .
\end{aligned}
$$

Given a sentence φ over \mathbb{C}, we convert it into $[\varphi]$ over \mathbb{R}, apply quantifier elimination by Theorem 4.3.2 "Tarski-Seidenberg", and and check by direct inspection whether the resulting variable-free formula is a tautology or not.

Solution of Problem 4.3.4 "First-order theory of planar Euclidean geometry". We interpret P as $\mathbb{R} \times \mathbb{R}$ by encoding a point p with its Cartesian coordinates $\left(p_{x}, p_{y}\right)$. Then, B, C can be encoded as suitable first-order formulas over the reals:

$$
\begin{aligned}
\varphi_{B}(p, q, r) \equiv & p_{x}=q_{x}=r_{x} \wedge p_{y} \leq q_{y} \leq r_{y} \vee \\
& \exists a, b \cdot p_{y}=a \cdot p_{x}+b \wedge \\
& q_{y}=a \cdot q_{x}+b \wedge \\
& r_{y}=a \cdot r_{x}+b \wedge \\
& p_{x} \leq q_{x} \leq r_{x} \\
\varphi_{C}(p, q, r, s) \equiv & \left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}=\left(r_{x}-s_{x}\right)^{2}+\left(r_{y}-s_{y}\right)^{2} .
\end{aligned}
$$

4.4 Model-checking on finite structures

Solution of Problem 4.4.1 "First-order logic model-checking". The first-order logic model-checking problem is PSPACE-complete. The upper bound can be shown by designing two player game of polynomial length, which can be solved in APTIME = PSPACE [6]. Let φ, \mathfrak{A} be the input formula and structure; thanks to Problem 2.2.1 "Negation normal form" we assume that φ is in NNF, and thus negations only appear in front of atomic formulas. Positions in the game are of the form (ψ, ϱ), where ψ is a subformula of φ and ϱ is a variable valuation. The game proceeds as to mimic the semantics of the formula:

1. If $\psi \equiv \mathrm{T}$, then Player I wins immediately.
2. If $\psi \equiv \perp$, then Player II wins immediately.
3. If $\psi \equiv R_{j}\left(t_{1}, \ldots, t_{n}\right)$, then Player I wins if

$$
\left(\llbracket t_{1} \rrbracket_{\varrho}^{\mathfrak{A}}, \ldots, \llbracket t_{k_{j}} \rrbracket_{\varrho}^{\mathfrak{A}}\right) \in R_{j}^{\mathfrak{A}}
$$

and Player II wins otherwise.
4. The condition for $\psi \equiv \neg R_{j}\left(t_{1}, \ldots, t_{n}\right)$ is similar.
5. If $\psi \equiv \psi_{1} \wedge \psi_{2}$, then Player II chooses a conjunct ψ_{i} and the game goes to position $\left(\psi_{i}, \varrho\right)$.
6. If $\psi \equiv \psi_{1} \vee \psi_{2}$, then Player I chooses a conjunct ψ_{i} and the game goes to position $\left(\psi_{i}, \varrho\right)$.
7. If $\psi \equiv \forall x \cdot \psi^{\prime}$, then Player II chooses an element of the domain $a \in A$ and the game goes to position $\left(\psi^{\prime}, \varrho[x \mapsto a]\right)$.
8. If $\psi \equiv \exists x . \psi^{\prime}$, then Player I chooses an element of the domain $a \in A$ and the game goes to position $\left(\psi^{\prime}, \varrho[x \mapsto a]\right)$.

Hardness for PSPACE can be shown by reducing from QBF, which is PSPACE-hard [22]. In order to solve the satisfiability problem for a QBF formula

$$
\varphi \equiv \exists X_{1} \forall Y_{1} \cdots \exists X_{n} \forall Y_{n} \psi
$$

with φ propositional, we consider evaluation in the the fixed model $\mathfrak{B}=$ $\left(\mathbb{B}, \wedge^{\mathfrak{B}}, \vee^{\mathfrak{B}}, \neg^{\mathfrak{B}}\right)$, where $\mathbb{B}=\{T, \perp\}$ and the semantics of the Boolean connectives $\wedge^{\mathfrak{B}}, \vee^{\mathfrak{B}}, \neg^{\mathfrak{B}}$ is given by the respective truth tables.

If the width is bounded, then the problem becomes PTIME-complete.
Solution of Problem 4.4.2 "SO model-checking". For every fixed arity k, the problem is PSPACE-complete, like in the first-order case. The upper bound follows from the fact that, once we have fixed a structure \mathfrak{A} with n elements, we can simulate second-order quantification $\exists R$, where R is a k-ary relation, by $n^{k} \cdot k$ first-order quantifications

$$
\exists x_{1,1}^{R}, \cdots, x_{1, k}^{R}, \cdots, x_{n^{k}, k}^{R}
$$

Atomic formulas of the form $R\left(t_{1}, \ldots, t_{k}\right)$ are then replaced by a finite disjunction

$$
\bigvee_{i=1}^{n^{k}} t_{1}=x_{i, 1}^{R} \wedge \cdots \wedge t_{k}=x_{i, k}^{R}
$$

When k is fixed, we get a polynomially larger formula which is equivalent to the original one w.r.t. the model-checking problem, and we can thus
apply Problem 4.4.1 "First-order logic model-checking" in order to obtain a PSPACE upper bound.

When k is part of the input, the argument above gives an EXPSPACE bound. We leave it open whether there exists a corresponding lowerbound.

Chapter 5

Arithmetic

5.1 Numbers

Solution of Problem 5.1.1. Consider the following definition for β :

$$
\beta=\{(a, b, i, x) \mid x=a \bmod (1+(1+i) \cdot b)\} .
$$

The modulo operation above is definable in arithmetic (and thus β) by the following existential formula:

$$
\varphi_{\bmod }(x, y, z) \equiv x \leq z \wedge \exists k . x=y-k \cdot z
$$

Then, $a=b \bmod c$ iff $\mathbb{N}, x: a, y: b, z: c \vDash \varphi_{\bmod }$. Establishing that β encodes sequences of numbers in the sense (β) follows from elementary arithmetical facts.

Solution of Problem 5.1.2 "Simplified function χ ". Let $\varphi(p, a, b)$ be any predicate encoding a objective pairing function $\mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. Then, let

$$
\chi(p, i, x) \equiv \forall a, b . \varphi(p, a, b) \rightarrow \beta(a, b, i, x) .
$$

Solution of Problem 5.1.3. The divisibility predicate $m \mid n$ is expressed directly as $\exists x . n=x \cdot m$, which allows us to express prime (n) as

$$
\forall x . x \mid n \rightarrow x=1 \vee x=n,
$$

and the fact that m, n are relatively prime as

$$
\forall x . x|m \wedge x| n \rightarrow x=1
$$

The function $\operatorname{lcm}(m, n)$ is expressed by the following ternary predicate (and similarly for the last point)

$$
\varphi(m, n, x) \equiv \underbrace{m|x \wedge n| x}_{\text {common multiplier }} \wedge \underbrace{\forall y \cdot m|y \wedge n| y \rightarrow x \leq y}_{\text {minimality }}
$$

Solution of Problem 5.1.4. The idea is the same in every case. We demonstrate it with 2^{n}, which is encoded as the existence of a sequence of $n+1$ numbers $2^{0}, 2^{1}, \ldots, 2^{n}$ starting at 1 and where the next number is obtained by doubling the previous one:

$$
\left.\begin{array}{rl}
\varphi(n, x) \equiv & \underbrace{\exists p .}_{\text {there is a sequence encoded by } p} \\
& \underbrace{\chi\left(p, 0,2^{0}\right)}_{\text {the first element is } 2^{0}} \wedge \underbrace{\chi(p, n, x)}_{\text {the } n \text {-th element is } x}
\end{array}\right)
$$

If $\varphi(n, x)$ encodes $x=2^{n}$, then its inverse function $y=\lfloor\log n\rfloor$ is easily expressed as

$$
\varphi^{-1}(n, y) \equiv \exists x \cdot n-1<x \leq n \wedge \varphi(y, x)
$$

We can express that n is a perfect number by listing its divisors and
computing their sum:

each next element is the sum of the previous one and the corresponding divisor
Solution of Problem 5.1.5 "Collatz problem". The Collatz sequence can be expressed by the same technique as in Problem 5.1.4 as the arithmetical predicate $\psi_{\text {Collatz }}\left(a_{0}, n, x\right)$ s.t. when starting at a_{0} the n-th element a_{n} is x. The Collatz conjecture is expressed by the sentence

$$
\varphi_{\text {Collatz }} \equiv \forall a_{0} \exists n \cdot \psi_{\text {Collatz }}\left(a_{0}, n, 1\right) .
$$

Solution of Problem 5.1.6. A univariate polynomial with natural coefficients of degree n is of the form

$$
a_{0} \cdot x^{0}+a_{1} \cdot x^{1}+\cdots+a_{n} \cdot x^{n} .
$$

The formula φ guesses the sequence of coefficients and checks that $f(x)$ equals the polynomial above. Evaluating the polynomial on input x can be done by guessing another sequence computing partial sums.

Solution of Problem 5.1.7 "Counting solutions". The formula \# $\varphi(y)$ guesses a sequence $n_{0}, \ldots, n_{y-1} \in \mathbb{N}$ of y distinct natural numbers s.t. each n_{i} is a solution of φ and there is no other solution:

$$
\begin{aligned}
\# \varphi(y) \equiv \exists p & \forall(i<j<y) \cdot \forall x, z \cdot \chi(p, i, x) \wedge \chi(p, j, z) \rightarrow x \neq z \wedge \\
& \forall(i<y) \cdot \forall x \cdot \chi(p, i, x) \rightarrow \varphi(x) \wedge \\
& \forall x \cdot \varphi(x) \rightarrow \exists(i<y) \cdot \chi(p, i, x) .
\end{aligned}
$$

5.2 Automata and formal languages

Solution of Problem 5.2.1. Let $A=(Q, \Sigma, I, F, \Delta)$ be a nondeterministic finite automaton recognising $L(A)=L$, where $Q=\{0, \ldots, n\}$ if a finite set of states, of which $I, F \subseteq Q$ are the initial, resp., finite ones, and Δ is a finite set of transitions of the from $p \xrightarrow{a} q$ with $p, q \in Q$ and $a \in \Sigma$.

First of all, we write two formulas $\varphi_{i}(x, y), i \in\{0,1\}$, with two free variables x, y expressing that the y-th least significant digit in the binary encoding of x is i. Then we can write a formula $\varphi_{\text {enc }}(a, n, x)$ expressing that a is the encoding of the sequence $w \in \Sigma^{n}$ s.t. $x=[w]_{2}$.

We construct a formula $\varphi_{L}(x)$ which guesses an accepting computation over the word w encoding $x=[w]_{2}$:

Solution of Problem 5.2.2. Let $A=(P, \Sigma, \Gamma, I, F, \Delta)$ be a nondeterministic pushdown automaton (PDA) recognising the context-free language $L(P)=$ L, where $P=\{0, \ldots, n\}$ is a finite set of control locations, Γ is a finite stack alphabet, $I, F \subseteq P$ are the initial, resp., final control locations, and Δ is a set of transitions of the form $p \xrightarrow{a, \mathrm{op}} q$ where $p, q \in Q, a \in \Sigma$, and op is a stack operation in

$$
\{\operatorname{nop}\} \cup\{\operatorname{push}(\gamma), \operatorname{pop}(\gamma) \mid \gamma \in \Gamma\}
$$

A configuration of a PDA is a pair (p, γ), where $p \in Q$ is a control location and $\gamma=b_{0} \cdots b_{m} \in \Gamma^{*}$ is the content of the stack. We can assume w.l.o.g. that $\Gamma=\{0,1\}$ and consequently the stack contents γ can be encoded as the integer $[\gamma]_{2}$. In order to guarantee a unique encoding, we assume that the stack contains always a bottom symbol 1 which cannot be popped. Under this encoding, pushing 0 on the stack corresponds to multiplying by 2 , pushing 1 corresponds to multiplying by 2 and adding 1 , popping 0 corresponds to check that $[\gamma]_{2}$ is even followed by integral division by 2 ,
and similarly popping 1 corresponds to check that $[\gamma]_{2}$ is odd followed by integral division by 2 . All those operations can be represented by simple arithmetic formulas, and thus we assume that we have a formula $\varphi_{\mathrm{op}}\left(\gamma, \gamma^{\prime}\right)$ checking that the stack encoded by γ^{\prime} can be obtained by applying op to the stack encoded by γ.

The required formula φ_{L} can now be constructed as in Problem 5.2.1 with the additional introduction of the stack contents:

$$
\begin{aligned}
& \exists a, n, p, \gamma \cdot \underbrace{\varphi_{\mathrm{enc}}(a, n, x)}_{\text {input }} \wedge \underbrace{\bigvee_{p_{0} \in I} \chi\left(p, 0, p_{0}\right)}_{\text {initial location }} \wedge \underbrace{\chi(\gamma, 0,1)}_{\text {initial stack }} \wedge \underbrace{\bigvee_{p_{n} \in F} \chi\left(p, n, p_{n}\right)}_{\text {final location }} \wedge \\
& \forall(i<n) . \bigvee_{p_{i} \xrightarrow{a_{i}, \mathrm{op}_{i}} p_{p_{i+1}} \underbrace{\chi\left(a, i, a_{i}\right) \wedge \chi\left(p, i, p_{i}\right) \wedge \chi\left(p, i+1, p_{i+1}\right)}_{\text {stack }} \wedge} \underbrace{\forall \gamma_{i}, \gamma_{i+1} \cdot \chi\left(\gamma, i, \gamma_{i}\right) \wedge \chi\left(\gamma, i+1, \gamma_{i+1}\right) \rightarrow \varphi_{\mathrm{op}_{i}}\left(\gamma_{i}, \gamma_{i+1}\right)}_{\text {-th transition }} .
\end{aligned}
$$

Solution of Problem 5.2.3. We can model the tape of a Turing machine with two stacks. It then suffices to encode them separately and apply a construction similar to the one in Problem 5.2.2.

Solution of Problem 5.2.4. We reduce from the halting problem of Turing machines. From Problem 5.2.3, for any recursively enumerable language L, we can construct a formula $\varphi_{L}(x)$ with one free variable x recognising it, and thus the following sentence can express whether L is nonempty:

$$
\exists x . \varphi_{L}(x)
$$

An analysis of the formulas involved in the construction of φ_{L} shows that the sentence above is of the form $\exists^{*} \forall^{*}$. (The celebrated theorem of Davis-Matiyasevich-Putnam-Robinson shows that the \exists^{*} fragment of arithmetic, corresponding to solvability of Diophantine equations, i.e., polynomial equations over the integers, is already undecidable.)

Solution of Problem 5.2.5 "Modular arithmetic". First of all, we axiomatise that R is a strict discrete total order with least and greatest elements, denoted < in the following, with a sentence $\varphi_{<}$. Zero is axiomatised as the least element in the order, and -1 as the greatest one:

$$
\begin{aligned}
\varphi_{0}(x) & \equiv \forall y . x \leq y \\
\varphi_{-1}(x) & \equiv \forall y \cdot x \geq y
\end{aligned}
$$

The successor function maps -1 back to 0 :

$$
\varphi_{s}(x, y) \equiv\left(\neg \varphi_{-1}(x) \wedge x<y \wedge \forall z . x<z \rightarrow y \leq z\right) \vee \varphi_{-1}(x) \wedge \varphi_{0}(y)
$$

Every element in the order is reachable by taking successors and predecessors:

$$
\forall x, y . x<y \leftrightarrow s(x) \leq y \wedge x \leq s^{-1}(y)
$$

Finally, we can axiomatise addition (and similarly multiplication):

$$
\begin{aligned}
\varphi_{+}(x, y, z) \equiv & y=0 \rightarrow z=x \wedge \\
& \forall y^{\prime} \cdot y=s\left(y^{\prime}\right) \rightarrow \varphi_{+}\left(x, y^{\prime}, z^{\prime}\right) \wedge z=s\left(z^{\prime}\right)
\end{aligned}
$$

(Note that there is no induction axiom schema, and thus some usual property of " + " such as associativity cannot be proved in this axiomatisation.) Modular arithmetic $\left(\{0, \ldots, n-1\},+_{n}, \cdot_{n}\right)$ is a finite model of these axioms, where $x+{ }_{n} y$ is interpreted as $(x+y) \bmod n$, and similarly for ${ }_{n}$.

Solution of Problem 5.2.6 "Trakhtrenbrot's theorem". We have seen in Problem 5.2.5 "Modular arithmetic" that one binary relation is enough to axiomatise modular arithmetic. The sentence φ_{M} encoding acceptance of a Turing machine M (cf. Problem 5.2.3) is in the $\exists^{*} \forall^{*}$-fragment, and thus by Problem 4.1.3 "Small model property for the $\exists^{*} \forall^{*}$-fragment" it has the finite model property: M halts iff φ_{M} has a finite model, thus showing that finite satisfiability is undecidable. Since finite satisfiability is recursively enumerable (we can just guess a finite model and check its validity), it follows that finite validity is undecidable too.

Solution of Problem 5.2.7. Arithmetic over the integers is undecidable, since we can express \leq, which allows to encode \mathbb{N} in \mathbb{Z} :

$$
\varphi_{\leq}(x, y) \equiv \exists a, b, c, d \cdot y=x+a^{2}+b^{2}+c^{2}+d^{2}
$$

5.3 Miscellanea

Solution of Problem 5.3.1. The idea is as in Problem 5.1.4: We write a formula that guesses a set of generators and checks that every element of the monoid is a product of generators.

Solution of Problem 5.3.2 "Second-order quantifier elimination". We encode sets of elements by sequences: A second order quantifier $\exists X$ is replaced by $\exists p_{X} \exists m_{X}$, where p_{X} encodes the sequence of the elements of X and m_{X} its length. An atomic formula $x \in X$ within the range of this quantifier is replaced by $\exists i . i<m_{X} \wedge \chi\left(p_{X}, i, x\right)$.

Bibliography

[1] Miklos Ajtai and Ronald Fagin. Reachability is harder for directed than for undirected finite graphs. The Journal of Symbolic Logic, 55(1):113150, 1990. URL: http://www.jstor.org/stable/2274958.
[2] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009.
[3] Günter Asser. Das Repräsentenproblem in Prädikatenkalkül der ersten Stufe mit Identität. In Zeitschrift für mathematische Logik und Grundlagen der Mathematik, volume 1, pages 252-263, 1955.
[4] E. W. Beth. On Padoa's Method in the Theory of Definition. Journal of Symbolic Logic, 21(2):194-195, 1956. doi:10.2307/2268764.
[5] Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und grundl. Math., 6:66-92, 1960.
[6] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114-133, January 1981. URL: http://doi. acm.org/10.1145/322234.322243, doi:10.1145/322234.322243.
[7] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377-387, June 1970. URL: http://doi.acm. org/10.1145/362384.362685, doi:10.1145/362384.362685.
[8] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control, 64(1-3):2-22, March 1985. URL: http://dx.doi.org/10.1016/S0019-9958(85)80041-3, doi: 10.1016/S0019-9958(85)80041-3.
[9] Arnaud Durand, Ronald Fagin, and Bernd Loescher. Spectra with only unary function symbols. In Mogens Nielsen and Wolfgang Thomas, editors, Computer Science Logic, pages 189-202, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
[10] Arnaud Durand, Neil D. Jones, Johann A. Makowsky, and Malika More. Fifty years of the spectrum problem: survey and new results. The Bulletin of Symbolic Logic, 18(4):505-553, 2012. doi:10.2178/ bsl. 1804020 .
[11] Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society, 98(1):21-51, 1961. URL: http://www.jstor.org/stable/1993511.
[12] Ronald Fagin. Contributions to the model theory of finite structures. PhD thesis, University of California, Berkeley, 1973.
[13] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of Computation, 7:43-73, 1974.
[14] Ronald Fagin. Monadic generalized spectra. Mathematical Logic Quarterly, 21(1):89-96, 1975. URL: https://onlinelibrary. wiley.com/doi/abs/10.1002/malq.19750210112, arXiv:https:// onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19750210112, doi:10.1002/malq. 19750210112.
[15] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308, 1985. Third Conference on Foundations of Software Technology and Theoretical Computer Science. URL: http://www.sciencedirect.com/science/ article/pii/0304397585901446, doi:https://doi.org/10.1016/ 0304-3975(85)90144-6.
[16] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17(5):935-938, 1988. URL: http:// epubs.siam.org/doi/abs/10.1137/0217058, arXiv:http://epubs. siam.org/doi/pdf/10.1137/0217058, doi:10.1137/0217058.
[17] Neil D. Jones and Alan L. Selman. Turing machines and the spectra of first-order formulas. The Journal of Symbolic Logic, 39(1):139-150, 1974. URL: http://www.jstor.org/stable/2272354.
[18] Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457-486, 1997. URL: http://www.jstor.org/ stable/2275541.
[19] K. L. McMillan. Interpolation and sat-based model checking. In Warren A. Hunt and Fabio Somenzi, editors, Computer Aided Verification, pages 1-13, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
[20] Albert Meyer. Weak monadic second order theory of succesor is not elementary-recursive. Technical report, MIT - Project MAC Technical Memorandum 38, 1973.
[21] Daniele Mundici. A lower bound for the complexity of Craig's interpolants in sentential logic. Archiv für mathematische Logik und Grundlagenforschung, 23(1):27-36, Dec 1983. doi:10.1007/BF02023010.
[22] Christos H. Papadimitriou. Computational Complexity. AddisonWesley, 1994.
[23] Elena Pezzoli. Computational complexity of Ehrenfeucht-Fraïssé games on finite structures. In Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors, Proc. of CSL'99, pages 159-170, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
[24] Pavel Pudlak. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic, 62(3):981-998, 091997. URL: https://projecteuclid.org:443/euclid.jsl/1183745308.
[25] Dana Scott and Patrick Suppes. Foundational aspects of theories of measurement. The Journal of Symbolic Logic, 23(2):113-128, 1958. URL: http://www.jstor.org/stable/2964389.
[26] Michael Sipser. Introduction to the Theory of Computation. Thomson South-Western, 3 edition, 2012. URL: http://gen.lib.rus.ec/book/ index.php?md5=83b32c22675567f3e22c93bd6bd372be.
[27] Larry J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD thesis, 1974.
[28] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26(3):279-284, Nov 1988. doi:10.1007/BF00299636.
[29] W. W. Tait. A counterexample to a conjecture of scott and suppes. Journal of Symbolic Logic, 24(1):15-16, 1959. doi:10.2307/2964569.
[30] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J., 1962.

[^0]: ${ }^{1}$ Spectra of sentences using only one unary function symbol are known to be precisely the ultimately periodic sets [9].

[^1]: ${ }^{2}$ In the special case of zero-ary constants c, we always have $\left(c^{\mathfrak{A}}, c^{\mathfrak{B}}\right) \in R$.

[^2]: ${ }^{3}$ Preservation under induced substructures on all finite models has been conjectured in 1958 by Scott and Suppes [25]. Tait showed that Łoś-Tarski's theorem does not hold on finite structures [29].

